Aerosols in Vulnerable Populations of Young Mice

Pulmonary Health Impacts of Golden Tobacco Flavored Vuse Alto Noah Black-Ocken¹, Blaire Holliday¹, Zakia Perveen², Matthew Schexnayder³, Alexandra Noël².

------ School of ------Veterinary Medicine

Introduction

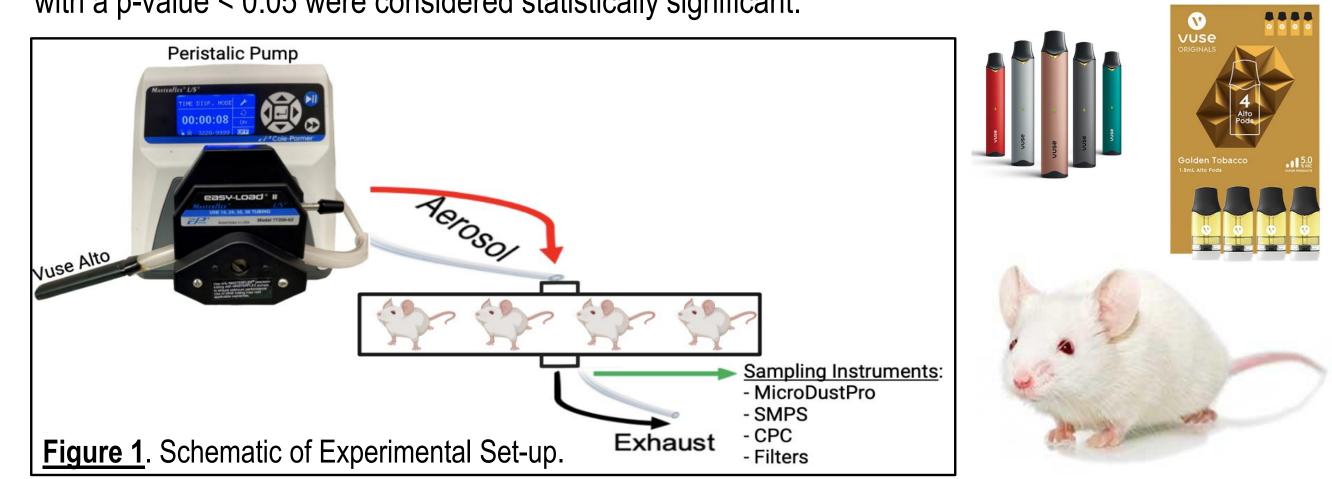
- With ~ 2 million American youth using electronic nicotine delivery system (ENDS) devices, the health risks associated with electronic-cigarette use among young individuals are a growing public health concern in the U.S.
- The rationale for this study focuses on the prevalence of use of 4th generation ENDS in U.S. middle and high school students, what has been labeled "the youth vaping epidemic."
- The National Youth Tobacco Survey (NYTS) reported that 11.3% of high school students and 2.8% of middle school students currently used electronic-cigarette devices and that disposable, 4th-generation ENDS devices were the most commonly used. NYTS also demonstrated that 85.5% of high school users and 79.2% of middle school users reported using flavored ENDS products.
- 4th-generation ENDS devices, such as the popular Vuse Alto, have been on the market since 2019. They are often disposable devices that resemble a USB flash drive. They use nicotine salt-based formulas to deliver high doses of nicotine to the bloodstream. These products have been advertised as being a "safer" alternative to smoking and ad campaigns have openly targeted a younger demographic.
- Limited data is available regarding the pulmonary health impact and lung responses to flavored Vuse Alto aerosols. Therefore, It is imperative to investigate the pulmonary effects of these devices.

Research Objectives:

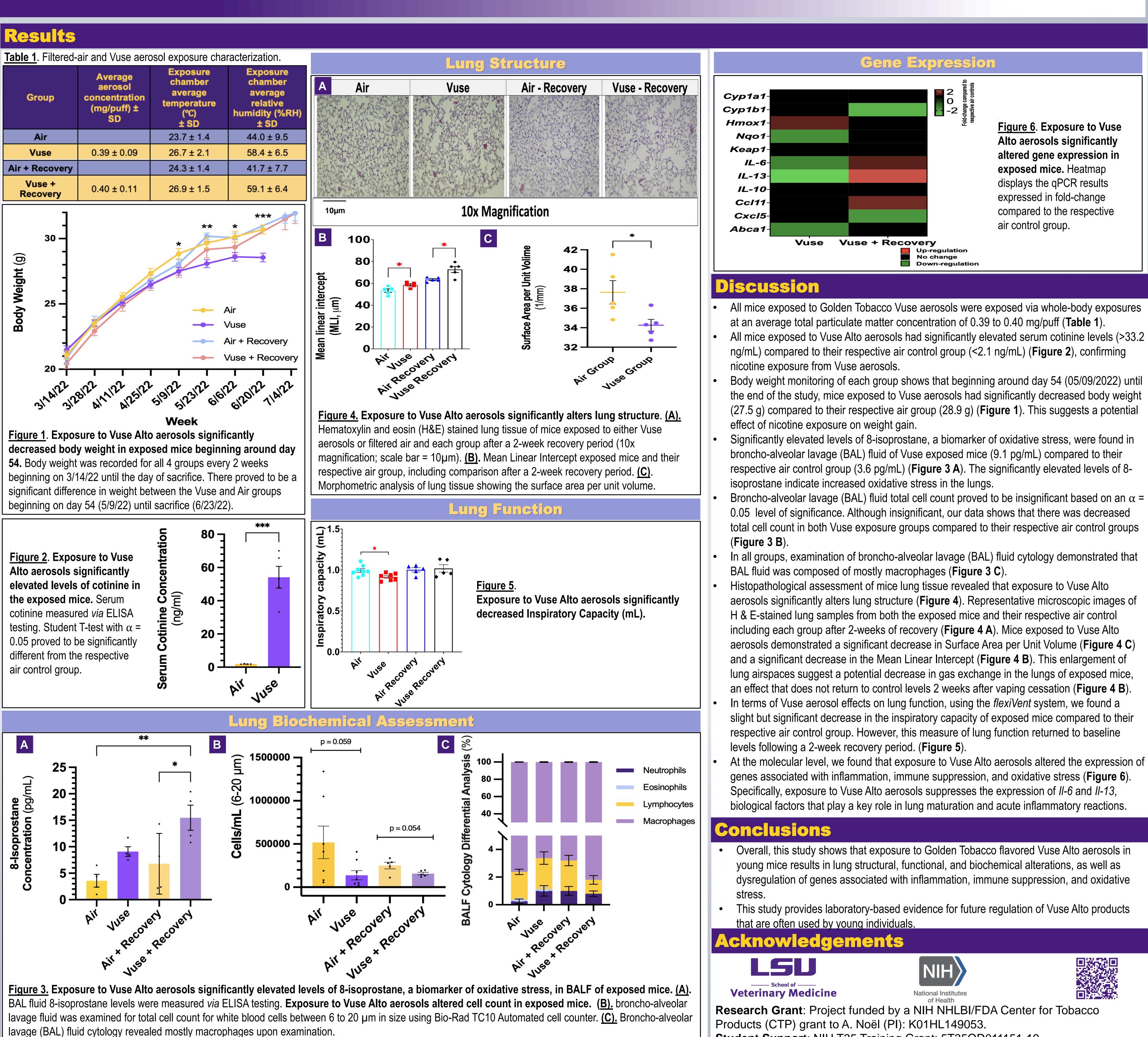
- Provide laboratory-based evidence on the pulmonary toxicity induced by golden tobacco Vuse Alto Aerosols on vulnerable populations of young mice.
- Determine the effect of golden tobacco flavored Vuse Alto aerosol exposure on lung structure and function.
- Assess biochemical changes to the lungs induced by golden tobacco flavored Vuse Alto aerosol exposure.

Hypothesis

Sub-acute exposure of juvenile 4-week-old mice to golden tobacco flavored Vuse Alto aerosols over a 3month period will decrease lung function and down-regulate the expression of several lung genes related to immune responses.


Methods

Experimental Methods:


- 4-week-old BALB/c mice were exposed to either air (control group) or golden tobacco Vuse Alto aerosols via whole-body exposures in a 5 L chamber for 1 hour a day, 5 days a week, for 3 months.
- Vuse Alto aerosol exposures followed a standard vaping topography profile of 5 seconds puff duration, 55mL puff volume, every 30 seconds for 1 hour. The total particulate matter mass concentration in the chamber was determined gravimetrically, using filters placed in cassettes, and monitored continuously in real-time via a MicroDustPro device.
- Lung function was assessed via whole-body plethysmography.
- Lung structure was examined by histopathology of formalin-fixed lung samples and lung slides that were prepared to determine morphometric measurements such as mean linear intercept via Image ProPlus software.
- Lung biochemical changes were assessed via:
- Bronchoalveolar lavage fluid (BALF) was examined for total & differential cell counts, and markers of oxidative stress.
- Measurement of serum cotinine concentration via ELISA testing.
- RNA extraction and qRT-PCR gene expression analysis of selected genes associated with inflammation, immune suppression, and asthmatic response.

Statistical Analysis:

Results were analyzed using either a Student t-test for pairwise comparison or ANOVA followed by the Tukey's test for multiple comparisons. All outcomes are expressed as mean \pm standard error of the mean (SEM). Statistical analyses were performed using GraphPad Prism 9 software. Results with a p-value < 0.05 were considered statistically significant.

¹Louisiana State University School of Veterinary Medicine; ²LSU School of Veterinary Medicine, Department of Comparative Biomedical Sciences; ³Lincoln Memorial University, College of Veterinary Medicine, Harrogate, TN.

lavage (BAL) fluid cytology revealed mostly macrophages upon examination.

Student Support: NIH T35 Training Grant: 5T35OD011151-19.