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Data Description

• The Kentucky Derby is a 1.25 mile race 
held annually at the Churchill Downs race 
track in Louisville, Kentucky. The data are 
taken from the website:

www.kentuckyderby.com
• The variables:

a. Year         year of race
b. Winner     name of the winning   

horse
c. Condition  track condition
d. Speed       speed of the winner,

in feet per second
e. Time          time of the winner, 

in seconds and fractional
seconds

http://www.kentuckyderby.com/


Data Description (cont.)

• Task: To provides a Bayesian 
model which can be used to 
predict the winning speeds for 
the races in the validation data 
set.

• Ground rules: Each model 
should produce a distribution 
for the winning speeds which is 
absolutely continuous with 
respect to Lebesgue measure.



Splitting Data

• The full data set consists of 
108 observations from year 
1896 to 2003.

• We held out the most recent 20 
years of data for model 
validation and synthesis. The 
remaining 88 years were split 
into two sets of 44 years each, 
with data set 1 containing even 
years and data set 2 containing 
odd years.



Model 1

• Using data 1
• Drawing the scatter plot of year 

and speed, we see that speed 
increases at a larger rate with 
time first and then increases at 
a smaller rate later. And very 
obviously, that with better track 
condition, the speed is faster. 
So I add a new indicator 
variable I(year>=1965), and 
use a indicator variable for fast 
and good track.

F1.ps



Model 1(cont.)

• For the response variable, 
using the log(speed). Because 
speeds are always positive and 
the speed increases with time 
not in a linear way.

• The explanatory variables X 
including log(year), 
I(year>=1965), 
I(condition=fast), 
I(condition=good), and the 
interaction of log(year) and 
I(year>=1965).



Model 1(cont.)

• Assume log(speed)~N(XB,σ2I)
h-1= σ2

• Use the non-informative prior 
distribution for B and h

(B,h)~1/h
• The posterior distribution then 

is  
B|h~N((X’X) –1X’Y, h-1(X’X) –1)

h~Gamma((n-p)/2,RSS/2)



Model 2

• Using data 2
• Believe that there is a superior 

speed that cannot be 
surpassed. The rate of speed 
increasing is influenced by the 
condition of the track, but the 
maximal speeds are the same 
for all the three conditions.



Model 2(cont.)

• Thus the model is built as the 
following:

speed[i]   ~ norm(mu[i],1/tau)
in which

mu[i]=(sp.m * (year[i]-C)) / (K[i] + 
(year[i]-C))

where
log(K[i]) <- alpha + beta * 

ind_slow[i] + gamma * ind_good[i];
• Sp.m is the superior speed the 

horse can reach. C is the year 
when the speed reaches 0. And K 
denotes the increasing rate of 
speed for each track condition.



Model 2(cont.)

• So the parameters we need to 
estimate here are sp.m, C, alpha, 
beta, gamma and tau. The 
variables are conditions of the 
tracks and years.

• Prior distributions
sp.m  ~ dnorm(55.0,25) I(0.0,);
alpha  ~ dnorm(0.0,16) I(0.0,);
beta  ~ dnorm(0.0,9) I(0.0,);
gamma  ~ dnorm(0.0,9) I(0.0,);
C ~  dnorm(1850.0,2500) I(0.0,);
tau ~ dgamma(0.1,0.1).

• Use Winbugs to get the posterior 
distributions.



Model Updating

• For model 1, update it using 
data set 2. Since the priors are 
normal and gamma distribution, 
we have closed forms for the 
posterior distributions.

• For model 2, update it sing 
data set1. Again using winbugs
to get the posterior 
distributions and the Bayesian 
summary.



Model Combination

• Store θ(1), θ(2) , …. , θ(N) for each 
model.

• π*
j=1/N*f(x1| θ(j))

πj= π*
j/Σ π*

j
• m(x2|x1)=Σ π*

jf(x2| θ(2))
…
m(x20|x1,…,x19)

• m(X)= m(x1)… m(x20|x1,…,x19)
• The weights for each model is 

changing as we adding new 
observations.

• For all the 20 validation data, 
model1/model2=0.6482574.



Model Comparison

• We want to compare the automatic 
selected models with the human 
models.

• Using the combination of data set 1 
and 2, we use the AIC and BIC 
rules to find the best models, 
comparing all the possible 
combinations of the variables. 

• To compare the performance of the 
models, we use sum of square 
errors, absolute errors and the 
likelihood for the validation data.



Model Comparison 
(cont.)

• For model 1,we want the 
regression models to be 
hierarchical model. Then we 
calculate AIC and BIC for each 
model, and find the models 
with the smallest AIC and BIC. 
The models will be the 
automatic selected model.

• For model 2, we find the mles
for the parameters for each 
different combinations of 
variables and calculate the AIC 
and BIC, then find the models.



Model Comparison 
(cont.)

• update one by one

aic1 bic1 Q

lkhd for v1-20 4E-08 0.65821 1E-07 2.15025 7E-08

square loss 6.30 1.08 5.61 0.96 5.81

absolute loss 9.24 1.02 9.21 1.02 9.06

AIC2 BIC2 M

lkhd for v1-20 1E-06 1.78E-01 2E-07 2.80064 3E-07

square loss 4.51 0.89 5.47 0.94 5.05

absolute loss 8.49 1.03 8.87 0.98 8.27

aic1 bic1 aic2 bic2 human

lkhd for v1-20 0.30 0.8 6.80 1.1 2E-07

square loss 1.30 1.16 0.93 1.13 4.83

absolute loss 1.10 1.09 1.01 1.05 8.41



Model Comparison 
(cont.)

• update once for all

aic1 bic1 Q

lkhd for v1-20 2.80E-09 0.041755 9.93E-08 1.47987 6.71E-08

square loss 8.027722 0.96 5.858469 0.70 8.35662

absolute loss 10.39115 0.99 9.415078 0.90 10.4892

AIC2 BIC2 M

lkhd for v1-20 8.71E-07 3.15 5.66E-08 0.84397 2.77E-07

square loss 4.68699 0.75 6.211413 0.74 6.25855

absolute loss 8.281895 0.89 9.415078 0.90 9.26021

aic1 bic1 aic2 bic2 human

lkhd for v1-20 0.02 0.58 5.07 0.329 1.7E-07

square loss 1.93 1.41 1.13 1.49 4.16

absolute loss 1.28 1.16 1.02 1.16 8.10



Model Comparison 
(cont.)

Updating.ps



Conclusion

• In our method, we use one of 
the splitting data set to build 
models, then using other data 
sets to update the models. 
After this, we use Bayesian 
model average to combine the 
built models.

• Our combined model is at least 
as good as the automatic 
selected model by BIC and 
AIC. And the performance is 
stable.



Future Research

• Doing more real data sets 
analysis to see the 
performance of this method.

• Using more automatic model 
selection methods to compare 
the performance of model 
building method.

• Build up theoretic system to 
systematically prove that this 
method can provide good 
models.
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