STATISTICS AND ITS INTERFACE Volume 2 (2009) 481-491

Robust and sparse bridge regression”

BIN Lif AND QINGZHAO YU

It is known that when there are heavy-tailed errors or
outliers in the response, the least squares methods may fail
to produce a reliable estimator. In this paper, we proposed
a generalized Huber criterion which is highly flexible and
robust for large errors. We applied the new criterion to the
bridge regression family, called robust and sparse bridge re-
gression (RSBR). However, to get the RSBR solution re-
quires solving a nonconvex minimization problem, which is
a computational challenge. On the basis of recent advances
in difference convex programming, coordinate descent algo-
rithm and local linear approximation, we provide an efficient
computational algorithm that attempts to solve this noncon-
vex problem. Numerical examples show the proposed RSBR
algorithm performs well and suitable for large-scale prob-
lems.

KEYWORDS AND PHRASES: Coordinate descent, D.C. pro-
gramming, Huber loss, Local linear approximation, Regu-
larization.

1. INTRODUCTION

Consider a linear regression model: given p predictors
xij, 7 = 1,2,...,p and the response y; for the ith obser-
vation, ¢ = 1,2,...,n. The ordinary least squares (OLS)
estimate ﬁOls minimizes

2

P
Yi — Po — Zl’ijﬁj

j=1

n

1
RSS:EZ

=1

(1)

Despite its simplicity and unbiasedness, the OLS estimator
is, however, not always satisfactory. Due to its high variabil-
ity, the OLS estimate often does poorly in both prediction
and interpretation, especially when the sample size n is not
large compared to the number of variables p.

To achieve better prediction, Hoerl and Kennard (1970)
introduced ridge regression, which stabilizes the estimates
by placing a restriction on the joint solution value. That is

P
2 gridge — in RSS s.t. 2<5.
(2 8 arg min st > |BPP <

j=1

*The authors would like to thank the referee for pointing out related
work, and for constructive comments and suggestions that helped to
improve the presentation of the paper.

fCorresponding author.

The ridge solution can also be obtained through the equiv-
alent penalized formulation

p
3 gridge()\) = in | RSS + A 2
(8) B\ = argmin +A> 18]

Jj=1

where 3 |3]? is the Ly penalty on 8 and A > 0 is the tuning
parameter which regulates the strength of the penalty.

Frank and Friedman (1993) introduced the bridge regres-
sion, which minimizes RS'S subject to a constraint Y |37 <
S with v > 0, without solving for the solution for any given
~. The bridge family includes ridge regression with v = 2
and subset selection with v = 0 as special cases. Notice that
for v > 1 the coefficients of bridge solutions are usually
non-zero for all the variables. In addition, the L. penalty
(3°18]7) with v > 1 is convex in 3, while non-convex for
v <1

Tibshirani (1996) introduced the lasso, which minimizes
RSS subject to the constraint > |8| < S, as a special case
of the bridge with v = 1. Equivalently, the lasso solution
can be defined as

P
(4) Blasso()\) — argrnﬁinRSS + /\Z |B7|

J=1

where A > 0. By imposing an Lj-penalty on the regression
coefficients, the lasso does continuous shrinkage and auto-
matic variable selection simultaneously.

In general, the penalized optimization problem can often
be described as:

(5)

B(A) = arg min LY, XB) + AJ(B),

where L(Y, X 3) is a non-negative loss function for goodness-
of-fit, J(B) is a non-negative penalty of model complexity,
and A is the non-negative tuning parameter that balances
between goodness-of-fit and model complexity. Besides the
bridge regression, SVM (Vapnik, 1998), SCAD (Fan and Li,
2001), group lasso (Yuan and Lin, 2006) and elastic net (Zou
and Hastie, 2005) fall into this category.

Although the lasso is much more appealing in modern
data analysis owing to its sparse representation, it suffers
from the heavy-tailed errors or outliers in the response like
other least squares methods. Namely, it may fail to pro-
duce a reliable estimator. To alleviate this problem, Wang
et al. (2006) proposed LA D-lasso and Rosset and Zhu (2004)

http://www.intlpress.com/SII/

suggested Huberized lasso which uses the well-known Huber
criterion as the loss function. Both methods use the least
absolute deviation (LAD) cost for the large errors.

In this article we suggest an algorithm that not only can
do regression shrinkage and variable selection (like lasso)
and but also is resistant to outliers or heavy-tailed errors
(like LAD). The basic idea is to use a class of nonconvex
Huber-like criteria as the loss functions (see the left panel
in Figure 1) and the L, norm of # (with 0 < v < 1) as
the penalty. To efficiently solve this optimization problem
(which is nonconvex), we utilize three optimization and ap-
proximation methods which were recently proposed in solv-
ing regularized statistical learning problems: (1) difference
convex programming (An and Tao (1997), Liu et al. (2005)
and Wu and Liu (2007)), (2) coordinate descent algorithm
(Friedman et al. (2007) and Wu and Lange (2008)), (3) local
linear approximation (Zou and Li, 2008).

The outline of this paper is as follows. Section 2 intro-
duces the generalized Huber criterion and the proposed ro-
bust and sparse bridge regression (RSBR). Section 3 reviews
the three key computation components used in the proposed
algorithm to solve RSBR. The details of the algorithm are
presented in Section 4. In Section 5, we examine the predic-
tion and variable selection performance for RSBR via simu-
lation studies, followed by an application on a real data set
in Section 6. Related issues are discussed in Section 7.

2. ROBUST AND SPARSE BRIDGE
REGRESSION

First, generalized Huber criterion is introduced. Then we
describe the proposed robust and sparse bridge regression
followed by an example of illustration.

2.1 Generalized Huber criterion and RSBR

The least squares criterion is well suited to normally dis-
tributed errors but can give poor performance for heavy-
tailed errors or outliers in the response. One remedy is to
remove influential observations from the least-squares fit.
Another approach, termed robust regression, is to employ a
fitting criterion that is not as vulnerable as least squares to
unusual observations.

The common method of robust regression is M-
estimation, introduced by Huber (1964). The general M-
estimator minimizes the objective function

(6) Zp(ei) = ZP Yi — Bo — Z%ﬂj

=1

where the function p has the following properties: (1) p(e

>
0, (2) p(0) = 0, (3) ple) = p(—e), (4) ples) = pley) for [es] >
le;|. For example, for least-squares estimation, p(e) = €.
Huber (1981) describes a well-known robust M-estimator

482 B. Li and Q. Yu

employing a loss function that is less affected by very large
residual values. The Huber criterion can be written as

e? o] < K
(7) pH(e){K2+2K(|e—K) le| > K.

The parameter K describes where the transition from
quadratic to linear takes place. Namely, errors smaller than
K get squared while larger errors increase the loss linearly.

Rosset and Zhu (2004) suggested Huberized lasso which
uses the Huber criterion as the loss function in the lasso to
minimize

n p p
(8) ZPH yi—ﬁo—ZfCijﬁj +)\Z|ﬁj|-
i=1 j=1 j=1

In this paper, we generalized the Huber criterion described
in (7) to a class of M-estimators as follows

e? le] < K
O pule) = {K2 + 2K (je] - K) e| > K

where 0 < 1 < 1. The left panel of Figure 1 illustrates
the family of generalized Huber criteria with three different
values of n at K = 2. The black solid line is the square
loss function. The grey shaded region represents the region
for all the possible generalized Huber criteria with 7 ranges
from zero to one.

Remarks.

e The Huber criterion py corresponds to p,—1, while the
truncated least-squares criterion corresponds to p,—o.

e The smaller the 7, the more robust the loss function is
against the outliers in response.

e Although the generalized Huber criterion is not convex
(in e € R) for 0 < 5 < 1, it can be decomposed as a
difference of two convex functions (of e) as follows:
(1) pyle) =€ —X(le] > K) [+

2K (K — le]) — K?],

where I(a) is an indicator function, equal to one when
a holds, otherwise zero. Note that the leading convex
function is the square loss function. In Figure 1, the
right panel shows the trailing convex function, i.e. the
second term on the right-hand side of (10). Notice that
the trailing convex function is K -insensitive, i.e. it is a
constant within the range [—K, K].

e The class of generalized Huber criteria falls into the
category of redescending M-estimator, which includes
Tukeys bi-weight, S-estimators (Maronna et al., 2006),
and t-type scores (He et al., 2000).

o |
T 21
o
<
Loa
o
T T T T T
-4 -2 0 2 4
e

<
[
-4 ;
! --- eta=1 ;
@4 e eta=0.5 ;
\ .
@ \ --- eta=0 !
~— . 1
Qo © 7. ;
£ ' ;
| \ ;
8 et A
. 1
qJ ‘. I'
< ')
\\ \ ’, /I
\ \ ,
.. 1
[aV ‘\ ZA\ , /I
v FE
o - * L___________.’";’I
T T T T T
-4 -2 0 2 4
e

Figure 1. lllustration of three generalized Huber criteria with different values of n at K = 2 (left) and the corresponding
trailing convex functions (right).

Based on the proposed generalized Huber criterion, we
define the robust and sparse bridge regression which mini-
mizes

(1) QW) =5 > ele) + A 15,

where e; = y; — 8o — >_ x;;0; and 0 < v < 1. RSBR differs
from bridge regression in two aspects: (1) the value of ~
cannot go beyond one in order to have sparse solution, (2)
the square loss function is replaced by generalized Huber
criterion. Note that the Huberized lasso (Rosset and Zhu,
2004) belongs to the RSBR family, i.e. it is a special case of
RSBR with y =1 and n = 1.

The reason of using generalized Huber criterion rather
than the Huber criterion is that the former provides more
flexibility of down-weighting the outliers in response than
the latter. Namely, when the datasets are subject to ex-
treme response outliers, which are commonly encountered
in applications, RSBR can adaptively use more robust loss
function (n < 1) than the Huber criterion (n = 1). As a
result, RSBR can achieve superior performance to the Hu-
berized lasso in the existence of outliers. This is illustrated
by an example presented in the following section. Compared
to other commonly used redescending estimators, the pro-
posed class of generalized Huber criteria (used in the bridge
family) is relatively easier to solve due to the recent advances
in statistical computation and programming for regularized
statistical learning problems. The details of the algorithm
which attempts to minimize (11) are presented in Section 4.

2.2 An illustrative example

We simulated an example from the true model y = X3+¢
where 3 = (1,0,0,0,0) and € ~ N(0,0.5?). The pairwise cor-
relation between x; and x; was set to be 0.5 for all ¢ # j.

Table 1. Summary of performance on simulation

Lasso Huberized Lasso Truncated Lasso
Average MSE 0.747 0.612 0.588
PTTS 0.290 0.250 0.470
NDR 0.100 0.010 0.010

The model was fitted on the training set which consists of
20 observations. An independent set of 20 observations was
used to select a tuning parameter A. The test set consists of
1,000 independent observations. To include an outlier in the
response, we randomly pick one observation from the train-
ing set and multiply its response value by ten, mimicking a
typo of shifting the decimal point one place to the left. We
compare the following three methods: the lasso; Huberized
lasso (RSBR with n = 1 and v = 1); truncated lasso (RSBR
with 7 = 0 and v = 1). For the last two methods, we set
K at 95" percentile for the distribution of {|e;|}2" for the
training samples.

Table 1 summarizes the performance of three methods
based on 100 replications. For prediction, we compare their
averages of mean square errors (on test sets). For variable
selection, we use the nondiscovery rates (NDR) and propor-
tions of times that the true model is selected (PTTS). Based
on Table 1, we see that truncated lasso does the best in both
prediction and variable selection.

3. REVIEW OF RELATED
COMPUTATIONAL METHODS

Solving RSBR requires handling a nonconvex minimiza-
tion problem which is computationally difficult especially for
high-dimensional problems. We propose an algorithm that
attempts to solve RSBR based on three computation com-

Robust and sparse bridge regression 483

ponents developed recently. The outline of the algorithm is
the following.

1. The L. bridge penalty is nonconvex (in) for 0 <
~ < 1. By using the local linear approxzimation (LLA),
we can approximate the L, penalty by a weighted L,
penalty (like adaptive lasso), which is convex in .

2. Although the generalized Huber criterion is nonconvex
for 0 < n < 1, it can be represented as a difference
of two convex functions as in (10). Hence, by applying
the difference convex (d.c.) programming, minimizing
the nonconvex problem becomes solving a sequence of
convex lasso-type subproblems.

3. To solve the convex lasso-type subproblems, we use the
coordinate descent algorithm.

We review these three computation components in the
next three sections, and describe the algorithm in Section 4.

3.1 Coordinate descent algorithm

For simplicity we assume that the predictors are stan-
dardized so that Zx”/n = 0 and foj = 1, and the

response is centered (i.e. Zyz/n = 0) from now on. With

i
a single predictor, the lasso solution is a soft-thresholded
version of the ordinary least squares estimate 3°* (Donoho
and Johnstone, 1995):

S(57,)
3ol — X if 3% > 0 and |3°1%] > A
Bl + X if 3o < 0 and |B7F%] > A
0 if 39| < A

Blasso(A) _

(12) =

When the predictors are uncorrelated, the lasso solutions are
still the soft-thresholded versions of the individual ordinary
least squares estimates. But this is not the case when the
predictors are correlated.

Efficient algorithms for solving the lasso solution have
been proposed; see e.g. the “shooting” algorithm in Fu
(1998), the homotopy algorithm in Osborne et al. (2000)
and the least angle regression (LARS) approach in Efron et
al. (2004). Friedman et al. (2007) and Wu and Lange (2008)
developed the coordinate descent algorithms for lasso and
lasso-related optimization problems. The rationale behind
the coordinate descent algorithms is to iteratively solve a
sequence of univariate problems (which is assumed to be
simple to solve) with “partial residuals” as the response vari-
able.

Denote (x;,y) = Y, Ti;jy;, where x; = (215,...,2p;) for
j = 1,...,p. To estimate (3;, the coordinate descent al-
gorithm applies soft-thresholding on the partial residuals

484 B. Li and Q. Yu

yi — yz(j) with all {Bk}k# fixed,

(13) ﬂj = arg mln Z (yz yl - xijﬂj)2
FAG A Y 1Bl
kik#j

Z 2555 The soft- thresholding estimate of 3;

k#j
n (13) can also be written as

N

D (x5 %0) Brs A

k:k#j

where y

(14)

(15) =5 <xj7y> -

In this paper we consider a particular form of the lasso-
type problem, which minimizes

p P
(16) La(B,v) = RSS+ > N8I+ v;B
j=1 j=1

where A; > 0 and v; € R. Notice that the objective function
in (16) is very similar to the adaptive lasso (Zou, 2006) with
an extra term for a weighted coefficient vector. The coordi-
nate descent algorithm for minimizing (16) is the following.

Algorithm 1 Coordinate descent algorithm for minimiz-
ing (16)

1. Initialize {G; -

2. Repeat until convergence of [g"s.

Forj=1,...,p

B- — S ((x], y) — Z <xj,xk>BAk —Uj,)\>.
k:k#j
End for loop.

3. End algorithm

By computing the inner products of each variable x; with
y initially and updating the covariance matrix sequentially,
each coordinate step (Step 2 in Algorithm 1) can be easily
updated. Studies (Friedman et al. 2007) show that the co-
ordinate descent algorithm is highly competitive with the
LARS and homotopy procedure in terms of computation ef-
ficiency for large-scale problems. For the convergence prop-
erties of coordinate descent algorithm in convex optimiza-
tion problems, we refer the readers to Tseng (2001).

3.2 One-step LLA estimate

Coordinate descent algorithm has been successfully ap-
plied to solve the lasso and lasso-related methods (see Fried-
man et al., 2007). However, it cannot be applied to solve the

bridge regression with v < 1. Zou and Li (2008) proposed
a unified algorithm based on the local linear approximation
for maximizing the penalized likelihood for a broad class of
nonconcave penalty functions.

Consider a well-chosen initial value 550) for 3, where 3; is

close to 5;0), and the penalty can be written as) px, (|5;]),

which includes the bridge regression family. Based on LLA,
the penalty function can be approximated by

o, (1851) 2 o, (187D + 24, 187 1851 = 18],

where p),_ (|ﬂ()|) is the derivative of py;(-) at |ﬂ(o)| For
the brldge regression model, the LLA algorlthm naturally
provides a sparse one-step estimator by

(17) B = argmm RSS +)\Z'ﬂﬁ(o)ﬂ 5

j=1

Regarding the initial value, Zou and Li (2008) suggested
to use the unpenalized estimate (e.g. OLS solution for lin-
ear regression model) as $(°). Note that (17) has the simi-
lar weighted penalty for each variable as the adaptive lasso
(Zou, 2006), which can be solved efficiently by coordinate
descent algorithm in Algorithm 1.

3.3 Difference convex programming

Although the LLA algorithm provides an approximate
and sparse solution for the penalized regression model with
a nonconvex penalty, it cannot be used to approximate non-
convex loss function such as generalized Huber criterion.
However, by using the difference convex programming (An
and Tao, 1997), which employs a decomposition of the loss
function into a difference of two convex functions, we are
able to find the approximate solution for the nonconvex
problem.

Consider minimizing a nonconvex objective function
g(w) which is a difference of two convex functions, i.e.
g(w) = g1(w) — ga(w) where both ¢;(w) and go(w) are
convex in w. The basic idea of d.c. programming is to con-
struct a sequence of subproblems, which are obtained by re-
placing the trailing convex function, e.g. go(w), by its affine
minorization function gao(w) 4+ (w — w(®), 7g2(w(®)) and
solve them iteratively, where 7go(w(®)) is the subgradient
of ga(w) at w(®) with respect to w. Specifically, given the
solution for the (m — 1)th subproblem w(™, the mth sub-
problem solves

(18) wl™) = arg min g (w) — [g2(w(™ V)

+ <W - W(m71)7V92(W(m71))>} , M= 1327' . ';M~

Note that after removing the constant terms in (18), mini-
mizing the mth subproblem is equivalent to

(19) w™ = argmin gy (w) — (w, Zaa(w (")),

In our decomposition, the leading convex function has the
same form as the adaptive lasso criterion (see (22) in Sec-
tion 4), while the trailing one is the K-insensitive loss (see
the right panel in Figure 1 and (22)). With this decompo-
sition, the d.c. programming yields a solution by solving a
sequence of lasso-type problems, which can be solved by the
coordinate descent algorithm described in Algorithm 1. Liu
et al. (2005) and Wu and Liu (2007) applied the difference
convex programming to solve the 1-learning problems and
multicategory SVM.

4. ALGORITHM
By applying the LLA, the one-step estimator for (11) is

1 < L
B =5 oaled) + A D187 P
i=1 j=1

On the other hand, (10) shows that the generalized Huber
criterion can be represented as the difference of two convex
functions, which allows us to use d.c. programming to min-
imize (20). Namely, (20) can be represented as a diference
of two convex functions as follows:

(20)

(21) QB =g1(B) — g2(B)
where
(22) 91(8) = RSS + 23416, 18,]
(23) - %Zlﬂei\ > K) [e?
+ 2K (K — |ei|) — K?].

The subgradient of g»(/3) with respect to 3 at 3(°) is

> xi(nK x Sign(e;) —ei)

itleg|>K

(24) v 92(8) =

where Sign(a) is the sign function, equal to one if a is posi-
tive, —1 if a is negative and zero otherwise. The inner prod-
uct of # and subgradient 7go(5(%) is

(25) (8, 792(8)) Zv]ﬁ]
where
(26) Z Sign(e;) (e; — nK) zi;.

itle;|>K

Hence, by using d.c. programming, minimizing the objective
function (20) becomes minimizing a sequence of subprob-
lems

Robust and sparse bridge regression 485

p
(27) = argmin RSS + A3 415," |5

j=1
P
+ Z Ujﬁj.
j=1

Note that the objective function in (27) is a special case of
the lasso-type problems described in (16) with

28 A =M forj =1

(28) i = M6, orj=1,...,p.

The algorithm that attempts to solve RSBR is as follows.

Algorithm 2 RSBR Algorithm with fixed A, v, n and K.
1. Initialize 8, m < 0 and 8% — 3.

2. Calculate residuals {e;};-;. Update {v;}/_; and {\;}7_, as
in (26) and (28).

3. Apply Algorithm 1 to estimate 3 in (27).
4. Update m — m + 1 and 8™ — B

5. Repeat Step 2—4 above until convergence of ﬂ(m).

Remarks.

e Instead of using unpenalized estimate, we use the lasso
estimate (with the same value of) as the initial values
B8O in Algorithm 2.

e Denote ||3||3 = ;7:1 7. The algorithm terminates
when [[3(m+) — gim||5/[|80M)]|; < €, where € is a pre-
specified convergence tolerance. In this study, we set €
at 1074,

4.1 Tuning parameters

How to select the tuning parameters is an important issue
in penalized regression problems. For RSBR, there are two
main practical issues for the choice of tuning parameters.

(1) Although the ranges of v and n are known ((0,1] and
[0, 1], respectively), the investigators usually don’t know the
ranges for A and K in advance. The values of A and K can
differ substantially between different datasets.

To fix the ranges of tuning parameters, we reparametrize
the tuning parameters as follows.

1. Let * = XN/ max{| >, x;;y:|}.
2. Let K be the a-quantile of the distribution of {|e;|}7.

Notice that since x is standardized, _ x;;y; is the uni-
variate regression coefficient for x;. Although it is possible
that * can be larger than one, in practice the optimal value
of * usually falls between zero and one. In fact, the opti-
mal value of A* is usually much smaller than one. On the
other hand, consider the coordinate descent algorithm for
the lasso with the initial values 3; = 0, Vj. If * is set to

486 B. Li and Q. Yu

be greater than one, then the algorithm will not select any
variable into the model. Hence, instead of A and K, we tune
A* and «, which both fall between zero and one.

One thing worth mentioning is that after reparametriza-
tion, the value of K depends on the distribution of residuals,
which further depends on B Thus, in Algorithm 2 the value
of K is updated in Step 2 after each iteration.

(2) Algorithm 2 has four tuning parameters. Hence the se-
lection of tuning parameters from four dimensional space is
computation intensive, especially for the large scale prob-
lems.

Although Algorithm 2 has four tuning parameters, the
results shown in Section 5 imply that 7 and A have greater
effects on the RSBR performance than a (or K) and +.
Hence, in practice, we can fix @ and v at a few levels (on a
coarse grid) and tune the values for A and 7 (on a fine grid).
This can substantially reduce the computation burden.

In practice, we can determine the value of o as follows.
(1) Apply the lasso on the data and use cross-validation
to find the value of tuning parameter A. (2) Determine the
proportion of outliers on the residuals after fitting the lasso.
For example, the proportion of the residuals that are either
greater than (Q3 + 1.5 x IQR) or less than (Q; — 1.5 X
IQR), where @1, Q3 and IQR are the first quartile, third
quartile and the inter-quartile range (IQR = Q3 — Q1) of
the residuals, respectively. (3) Use the proportion of outliers
we got in the previous step as the value of «.

The values of tuning parameters can be chosen by opti-
mizing the performance via cross-validation or monitoring
the performance on an independent validation set through
grid search. In practice, we did a grid search for the opti-
mal values of tuning parameters by using the efficient gra-
dient cleversearch(-) function developed by Susanne Heim
for R/S-PLUS.

5. SIMULATION STUDIES

The purpose of this simulation study is to show that the
proposed RSBR is competitive with the lasso for the normal
errors. However, when large errors exist (e.g. the error term
has a Cauchy distribution), RSBR achieves better perfor-
mance than both the lasso and Huberized lasso in terms of
prediction accuracy and/or variable selection.

We simulated data from the true model y = X3+¢ in four
examples which were used in the original lasso paper (Tib-
shirani, 1996) to compare the prediction performance of the
lasso and ridge regression systematically. For each example,
we also considered two types of error distributions: normal
(i.e. € ~ N(0,0?)) and Cauchy (i.e. € ~ Cauchy(0, 1), whose
density function is m)

For each example, our simulated data consist of a training
set, an independent validation and test set. Models were fit-
ted on training data only, and the validation data were used

to select the tuning parameters. We computed the test error
on the test data set. We use the notation -/ - /- to describe
the number of observations in the training, validation and
test set respectively, e.g. 50/50/1000. Here are the details of
the four examples.

1. In example 1, we simulated 100 data sets consisting of
eight predictors, which are 8 = (3,1.5,0,0,2,0,0,0).
The pairwise correlation between x; and x; was set to
be corr(i, j) = 0.5"77I. We set ¢ = 3 and sample size
50/50/1000.

2. Example 2 is the same as example 1, except that 3; =
0.85 for all j.

3. Example 3 is the same as example 1, except that 51 =5
and 3; =0 for j ={2,...,8} and 0 = 2.

4. In example 4, we simulated 100 data sets consisting of
40 predictors which are

B=1(0,...,0,2,...,2,0,...,0,2,...,2)
—— —— —— —
10 10 10 10
and pairwise corr(i,j) = 0.5 for all i and j. We set

o = 15 and sample size 600,/400/5000.

We compare the following six methods: (1) the lasso, (2)
Huberized lasso (denoted as hlasso), (3) RSBR with v =1
and o = 0.90 (denoted as 1/0.9), (4) RSBR with v =1
and o = 0.80 (1/0.8), (5) RSBR with v = 0.01 and a =
0.90 (0.01/0.9), (6) RSBR with v = 0.01 and a = 0.80
(0.01/0.8). Notice that for the Huberized lasso, we did a two-
dimensional search on « and the log-scale of *, while for
the other four RSBR methods, we did the two-dimensional
search on 7 and the log-scale of A*. The searching ranges for
both A* and 1 were set to be [107%, 1], while the range for
a was [0.8,1.0].

For the normal error case, the prediction performance
is measured by the mean square error while for the Cauchy
case it is measured by the median square error. Let d;; be the
prediction measure for the 5% competitor (j = 1,...,6) in
the i" replication (i = 1,...,100). To compare the predic-
tion performance, we use the comparative test error, defined
by

100 x dij

PN 1100, 5= 1,2,3,4,5,6
min{d; 1 }i=1,...6 J

Cij =

over 100 replications for each of the six methods. This quan-
tity facilitates individual comparisons by using the test er-
ror of the best method for each data set to calibrate the
difficulty of the problem. Table 2 shows the average of com-
parative errors for the lasso and its competitors based on
100 random replications.

Based on Table 2, we have the following remarks. (1) For
the normal error case, all six methods have very close pre-
diction performance. On the average, no two methods differ
more than 2% in terms of the prediction performance in
all four examples (i.e. all pairwise differences within each

Table 2. Summary of prediction performance in four examples

Normal errors

lasso hlasso 1/.9 1/.8 .01/.9 .01/.8
Ex. 1 10255 102.24 102.10 102.91 104.02 103.84
Ex. 2 102,53 102.17 102.69 102.87 103.60 104.18
Ex. 3 103.04 102.84 102.56 102.66 103.47 103.11
Ex. 4 100.31 100.23 100.48 100.61 101.20 101.31

Cauchy errors

lasso hlasso 1/.9 1/.8 .01/.9 .01/.8
Ex. 1 199.42 12821 117.65 113.11 109.12 106.82
Ex. 2 176.46 125.31 116.27 115.04 112.81 111.61
Ex. 3 19446 135.77 122,51 121.81 107.57 105.91
Ex. 4 941.14 220.89 163.70 152.94 107.85 104.98

example are less than 2% in Table 2 for the normal error
case). (2) However, for the Cauchy error case, the lasso has
substantially higher error rates than others, particularly in
example 4. This is because in example 4 we have a relatively
large training sample size such that more extreme outliers
were included than the first three examples. (3) Huberized
lasso performs inferior to other four RSBR methods which
shows the advantage of using generalized Huber criterion
over Huber loss. It also implies that 77 has greater effects on
the prediction performance of RSBR than a and v do. (4)
“0.01/0.8” performs consistantly the best in all four exam-
ples.

To compare the variable selection performance, we con-
sider the nondiscovery rate (NDR) and false discovery rate
(FDR) as well as the proportion of times that the true model
is selected (PTTS). Table 3 presents the values of NDR,
FDR and PTTS for six competitors.

Based on Table 3, we have the following remarks. (1) For
the normal error case, the six methods have similar vari-
able selection performance in general, and the lasso tends to
have smaller NDR than its competitors. (2) However, for the
Cauchy error case, the lasso has substantially higher NDR,
than others. On the other hand, the lasso has smaller FDR
than the others in Example 1 & 3. For PTTS, we see that
the lasso has lower chance to select the true model than oth-
ers. It implies that when large errors exist, the lasso tends
to select fewer variables into the model than RSBR does.
(3) In both normal and Cauchy error cases, the Huberized
lasso has similar variable selection performance as its RSBR
competitors.

Model stability is an important issue in regression anal-
ysis. Generally, it is desired to have a stable estimate of
regression coefficients. To compare model stability, we use
the Lo distance variance (Lo DV') criterion, defined by

LyDV = Var{||3"” — Bl|2};%

100
Z BJ@/IOO. Note that
i1

1|3 — 3| is the Euclidean distance between the it estimate

where 3 = (B1,...,8,) for 3; =

Robust and sparse bridge regression 487

Table 3. Summary of variable selection performance in four

Table 4. Summary of LoDV in four examples

examples Brror Method Ex.1 Ex. 2 Ex. 3 BEx 4
Method Normal errors Cauchy errors lasso 0.991 1.343 0.408 4.431
NDR FDR PTTS NDR FDR PTTS hlasso 0.976 1.320 0.416 4.487
lasso .003 544 .090 417 368 .040 Normal 1/.9 0.943 1.332 0.442 4.562
hlasso .007 .5b4 .090 110 572 .060 1/.8 1.012 1.363 0.412 4.590
1 1/.9 .013 .594 .070 .110 572 .060 .01/.9 1.175 1.412 0.532 4.996
1/.8 .013 .598 .080 .083 .610 .090 .01/.8 1.111 1.460 0.518 4.973
.01/.9 .007 .506 .110 .090 .602 .080 lasso 1.978 1.599 2.317 6.844
.01/.8 .007 492 120 117 .516 .090 hlasso 1.364 1.734 1.035 1.063
lasso .060 - .640 .502 - .180 Cauchy 1/.9 1.262 1.549 1.001 0.918
hlasso .062 - .650 215 - .450 1/.8 1.158 1.426 1.004 0.842
9 1/0.9 .066 - .640 .164 - .580 .01/.9 1.234 1.606 0.833 0.824
1/0.8 .071 - .610 .184 - .560 .01/.8 1.150 1.573 0.865 0.750
.01/.9 .075 - .590 .220 - .450
.01/.8 .076 - .580 .222 - 420
lasso 0 .381 .190 2230 .320 .160 California. The response variable is the median house value
hlasso 0 373 190 .060 0.443 210 in each neighborhood measured in units of $100,000. There
5 /9 0 436 140 .040 0.550 190 are eight continuous input variables, which are demograph-
/.8 0 -440 120 060 0.531 190 j.q (e.g. median income), housing density and occupancy,
01/.9 0 304 200 060 0416 210 housing properties (e.g. number of rooms/bedrooms), and
.01/.8 0 .303 .190 .060 0.389 .220 1
ocation of each neighborhood. Since the response variable
lasso .022 557 0 310 379 .000
hlasso 020 572 0 026 503 010 median hou.se value is h.1gh1y skewed to rlghF, logarithm
1/0.9 024 546 0 017 495 010 transformation was applied before the analysis (see Pace
4 1/0.8 027 546 0 019 470 000 and Barry, 1997). To examine the robustness property in
.01/.9 023 533 0 026 356 070 the presence of outlying responses, in this study we use the
.01/.8 .024 520 0 027 342 .020 raw median house value as the response without any trans-

of 8 and the average of the estimate over 100 trials. Table 4
shows the values of LoDV for each method under different
scenarios.

Based on Table 4, we have the following remarks. (1)
For the normal error case, the Ly DV values for the first
four methods (i.e. the lasso, Huberized lasso, “1/0.9” and
“1/0.8”) are close to each other in all examples and are
slightly lower than the ones for “0.01/0.9” and “0.01/0.8”.
This is because that when - is very small, it tends to behave
like the best subset selection method which corresponds to
v = 0. (2) For the Cauchy error case, the lasso has larger
variation in estimating § than others in Example 1, 3 and 4
(particularly in Example 4). This agrees with the known fact
that the least squares methods are unstable for the presence
of large outliers in the response. In Example 2, the LoDV
values for all six methods are close to each other. This may
be due to the fact that the underlying model is dense. In ad-
dition, the Lo DV values for the Huberized lasso are slightly
higher than the other four RSBR competitors in all exam-
ples.

6. CALIFORNIA HOUSING DATA

This data set, available at CMU StatLib repository
(http://lib.stat.cmu.edu/datasets/), was originally used by
Pace and Barry (1997). It consists of aggregated data from
each of 20640 neighborhoods (1990 census block groups) in

488 B. Li and Q. Yu

formation. Figure 2 shows the histogram of median house
values (left) and the normal probability plot of the residu-
als after fitting the OLS regression model on all eight input
variables (right). We see that there are many neighborhoods
that have extremely large median house values. For exam-
ple, in the data set, the skewness and kurtosis of the resid-
uals shown in the right panel is as large as 1.25 and 9.25,
respectively.

To examine the performance for RSBR in high-
dimensional problems (i.e. p is large), we first applied the
sequential Importance Sampled Learning Ensembles (ISLE,
Friedman and Popescu, 2003) on the housing data. ISLE is
a two-stage strategy to construct the final model. In the
first stage, an ensemble of learning models is generated.
In the second stage, the final quadrature coefficients (i.e.
the weights of the generated learning models) are estimated
through a regularized regression such as the lasso. In this
study, we use the best performing tree ensemble considered
in Friedman and Popescu (2003). Particularly, the sequential
ISLE with the subsample proportion at 0.2 and shrinkage
parameter v = 0.01. The sequential ensemble consists of 500
regression trees with the maximum depth of variable inter-
action at five (i.e. a model with up to five-way interactions).
For the details of ISLE, we refer the readers to Friedman
and Popescu (2003).

We randomly split the data (n = 13760) into three
equal size sets: training, validation and test set (i.e.
6880,/6880/6880). We compare the same six methods as

0.8
|

Density
0.4

0.2

0.0

House price ($100,000)

Sample Quantiles

-2

-4
o

-6
1

-4 -2 0 2 4
Theoretical Quantiles

Figure 2. Histogram of median house values (left) and the normal probability plot of the residuals after fitting the OLS
regression (right).

1.15

1.10
|

1.05
|

=

8
1/0.8

01/0.9 .01/0.8

1/0.9

1.00

T T
lasso hlasso

Figure 3. Boxplots of comparative test errors in California
housing data.

the ones in the simulation study and use the same ranges
for searching the tuning parameters. The prediction per-
formance is measured by the median square errors on the
test set. Figure 3 shows the boxplots of comparative test
errors for the lasso and its competitors based on 50 random
replications. We see that “1/0.8” achieves the best predic-
tion performance. For example, it wins the best performance
(i.e. the smallest median square errors on the test set) over
25 times out of 50 replications; and in the worst case (out
of 50 replications) its median square error is only about 2%
higher than the best method.

6.1 Computation issues

In this section we examine the computational efficiency
for Algorithm 2 under various scenarios. The Algorithm 2 is
implemented as R language functions, with the coordinate
descent algorithm calling FORTRAN routine. All timings
were carried out on an Intel Xeon 2.66GHz processor.

To vary the dimensionality of the problem, we randomly
select a particular number of regression trees (without re-
placement) generated from sequential ISLE. To vary the
sample size, we randomly select (without replacement) a
particular number of neighborhoods from the entire data
set. The average run times are calculated based on 10 ran-
dom trials, in which the tuning parameters *, n and «
are randomly selected from a uniform distribution and 7 is
fixed at two levels: 1 and 0.01. Figure 4 shows the average
CPU timings for various sample sizes and dimensionalities.
We see that the average run times are approximately lin-
ear with the sample size n and dimensionality p in both
cases.

In Figure 4 we see the average run times for v = 0.01
are very close to the ones for v = 1, which may contradict
to the intuition that smaller v should cost us more time
to solve (i.e. for small value of v, RSBR tends to behave
like the best subset selection method which is NP-hard to
solve.) Notice that in the proposed algorithm, for the com-
putation consideration, the one-step LLA estimator is used.
Both Meng (2008) and Biithlmann and Meier (2008) have
suggested the possibility to go beyond the one-step estima-
tor. Namely, they suggested to use multiple-step estimators
in order to have some “safety-net” for guarding against ac-
cidental “unreasonable” initial values. If multiple-step LLA
estimator is used, then solving the small value of v may
have considerably more computation than the large value of
v does.

An important factor related to the computational effi-
ciency for Algorithm 2 is the number of iterations (of Step
2-4) needed to achieve the convergence of 3. Here we use
all 500 trees generated from sequential ISLE (p = 500). Ta-
ble 5 shows the average numbers of iterations based on ten
random trials under various numbers of training observa-
tions.

Robust and sparse bridge regression 489

a
-] — p=100
o | - p=200 .
% e T p = 300 ///
s | - p =400 /,°
§ ©-+ -—--- p=500 s -0
) /,’O‘T_ I’)
& € o/{’ll) ‘o/ -
o 7 ,‘/ 0 o 0---0
£ < / _o.- ’ ,
= 8 /
c 7o ’
=] VAR . 9---0-_
C N0 - B —°
o .o o o090
3 o
o 4
T T T T
5000 10000 15000 20000
n

Run time (CPU seconds)

12

10

gamma=0.01
— p=100

T T T
5000 10000 15000 20000

Figure 4. Average CPU timings (in seconds) for various sample sizes and dimensionalities with v = 1 (left) and -y = 0.01
(right).

Table 5. Average numbers of iterations with different sample

size
Sample size (><1()3) 50 7.5 10 12.5 15 175 20
Iterations 6.3 72 11.9 97 95 80 88

7. DISCUSSION

This article is devoted to computational developments of
robust and sparse regression in the bridge family. Since both
the generalized Huber loss function and the bridge penalty
(for v < 1) are nonconvex, the computational task becomes
challenging. Two computational tools are used here: (1) d.c.
programming, and (2) local linear approximation. The for-
mer decompose the generalized Huber loss into a difference
of two convex functions, while the latter approximates the
nonconvex penalty by a linear combination of weighted lasso
penalties. Hence, minimizing the original nonconvex prob-
lem in RSBR becomes solving a sequence of convex lasso-
type subproblems. By using the coordinate descent algo-
rithm, we can solve the subproblems efficiently.

Although our focus in this article is on the bridge fam-
ily, we believe the operation of generalized Huber loss also
can be applied to other regression methods. An example of
straightforward extension is to combine the generalized Hu-
ber loss with the elastic net penalty (Zou and Hastie, 2005),
which consists of a linear combination of the lasso and ridge
penalty. It is known that elastic net is equivalent to a lasso-
type problem (see Section 2.2 in Zou and Hastie, 2005) and
can be solved by coordinate descent algorithm (see Section
2 in Friedman et al., 2007). Hence, Algorithm 2 can also be
applied to the robust elastic net regression using generalized
Huber loss.

Received 25 August 2009

490 B. Li and Q. Yu

(8]

[9]
(10]

(11]

(12]

(13]

14]

(15]

[16]

(17]

REFERENCES

AN, L.T.H. anDp Tao, P.D. (1997). Solving a class of linearly con-
strained indefinite quadratic problems by d.c. algorithms. Journal
of Global Optimization 11 253—-285.

BUHLMANN, P. AND MEIER, L. (2008). Discussion: One-step sparse
estimates in nonconcave penalized likelihood models. Annals of
Statistics 36 1534-1541.

DoONOHO, D. AND JOHNSTONE, I. (1995). Adapting to unknown
smoothness via wavelet shrinkage. Journal of the American Sta-
tistical Association 90 1200-1224.

EFRrRON, B., HAsTIE, T., JOHNSTONE, I. AND TIBSHIRANI, R.
(2004). Least angle regression. Annals of Statistics 32 407-499.
FaN, J. AND L1, R. (2001). Variable selection via nonconcave pe-
nalized likelihood and its oracle properties. Journal of the Amer-
ican Statistical Association 96 1348-1360.

FRANK, LLE. AND FRIEDMAN, J.H. (1993). A statistical view of
some chemometrics regression tools. Technometrics 35 109—148.
FRIEDMAN, J.H., HAsTIE, T., HOFLING, H. AND TIBSHIRANI, R.
(2007). Pathwise coordinate optimization. The Annals of Applied
Statistics 1 302-332.

FRIEDMAN, J.H. AND PoPEScu, B. (2003). Importance sampled
learning ensembles. Stanford University, Department of Statis-
tics, technical report.

Fu, W. (1998). Penalized regressions: the bridge vs the lasso.
Journal of Computational and Graphical Statistics 7 397-416.
HE, X., SimPsoN, D.G. AND WANG, G. (2000). Breakdown points
of t-type regression estimators. Biometrika 87 675-687.

HoERL, A.E. AND KENNARD, R.W. (1970). Ridge regression: bi-
ased estimation for nonorthogonal problems. Technometrics 12
55-67.

HUBER, P.J. (1981). Robust Statistics. John-Wiley and Sons, New
York.

Liu, Y., SuEN, X. AND Doss, H. (2005). Multicategory psi-
learning and support vector machine: computational tools. Jour-
nal of Computational and Graphical Statistics 14 219-236.
MARONNA, R.A.; MARTIN, D.R. AND YOHAI, V.J. (2006). Robust
Statistics: Theory and Methods. Wiley.

MENG, X. (2008). Discussion: One-step sparse estimates in non-
concave penalized likelihood models: Who cares if it is a white
cat or a black cat? Annals of Statistics 36 1542—1552.

OSBORNE, M., PRESNELL, B. AND TURLACH, B. (2000). A new
approach to variable selection in least squares problems. IMA
Journal of Numerical Analysis 20 389—404.

PAcCE, R.K. AND BARRY, R. (1997). Sparse spatial autoregressions.

(18]

19]

20]

(21]

(22]

23]
[24]

[25]

Statistics and Probability Letters 33 291-297.

ROSSET, S. AND ZHU, J. (2004). Discussion of “Least angle re-
gression” by Efron, Hastie, Johnstone and Tibshirani. Annals of
Statistics 32 469-475.

TIBSHIRANI, R. (2004). Regression shrinkage and selection via the
Lasso. Journal of the Royal Statistical Society, Series B. 58 267—
288.

TsENG, P. (2001). Convergence of block coordinate descent
method for nondifferentiable maximization. Journal of Optimiza-
tion Theory and Applications 109 474-494.

WaNg, H., L1, G. AND JIANG, G. (2006). Robust regression shrink-
age and consistent variable selection via the lad-lasso. Journal of
Business and Economics Statistics 11 1-6.

Wu, Y. AND Liu, Y. (2007). Robust truncated-hinge-loss support
vector machines. Journal of the American Statistical Association
102 974-983.

Wu, T. AND LANGE, K. (2008). Coordinate descent algorithms for
lasso penalized regression. Annals of Applied Statistics 2 224—244.
VAPNIK, V. (1998). Statistical Learning Theory. John Wiley, New
York.

YuaN, M. AND LIN, Y. (2006). Model selection and estimation in
regression with grouped variables. Journal of the Royal Statistical
Society, Series B. 68 49-67.

[26] Zou, H. (2006). The Adaptive lasso and its oracle properties.
Journal of the American Statistical Association 101 1418-1429.
Zou, H. AND HAsSTIE, T. (2005). Regularization and variable se-
lection via the elastic net. Journal of the Royal Statistical Society,

27]

Series B. 67 301-320.
(28]

Statistics 36 1509-1533.
Bin Li
Assistant Professor, Department of Experimental Statistics

Louisiana State University
E-mail address: bli@lsu.edu

Qingzhao Yu

Assistant Professor, School of Public Health
Louisiana State University Health Sciences Center
E-mail address: qyu@lsuhsc.edu

Robust and sparse bridge regression 491

Zou, H. aND L1, R. (2008). One-step sparse estimates in non-
concave penalized likelihood models (with discussion). Annals of

mailto:bli@lsu.edu
mailto:qyu@lsuhsc.edu

	Introduction
	Robust and sparse bridge regression
	Generalized Huber criterion and RSBR
	An illustrative example

	Review of related computational methods
	Coordinate descent algorithm
	One-step LLA estimate
	Difference convex programming

	Algorithm
	Tuning parameters

	Simulation studies
	California housing data
	Computation issues

	Discussion
	References
	Author's addresses

