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1. Introduction

Count data with excess zeros are often encountered in a wide range of applications
including medical, public health and social studies, particularly when the event of interest
is rare. This type of count data is typically assumed to be from two-component models,
which are often built using mixture and conditional models. The former is well known as
the zero-inflated Poisson (ZIP) model (Lambert, 1992), mixing a discrete point mass and
a Poisson distribution. The latter is a two-part conditional model, known as hurdle model
(Mullahy, 1986), using a zero mass, so-called ‘hurdle’, and truncated Poisson distribution.
The ZIP regression model is mixtures of logistic and Poisson regression models where the
logistic portion contributes to the probability of a count of zero and the Poisson portion
contributes to the frequency of utilization conditional on use. The hurdle model is also a
two-part mixture model. One part is a binary model for whether the response outcome
is zero or positive. The second part uses a truncated Poisson model for positive outcome.

Although the ZIP model is commonly used, the ZIP model is suitable only for handling
zero inflation. However, when a data set is zero deflated at a level of a factor, the estimate
of the corresponding parameter in the binary part of the ZIP model can be infinity (Min
and Agresti, 2005). In addition, the ZIP model is more complex to fit than the hurdle
model. In contrast, the hurdle model is suitable for modeling both zero inflation and zero
deflation (Min and Agresti, 2005). In this paper, we propose new models based on the
idea of hurdle model using a marginalized model approach in order to analyze clustered
count data with extra zeros.

To analyze clustered count data with extra zeros, high positive correlation between
responses must be considered. In this situation, random effects are commonly used to ex-
plain the within-subject dependence. Hall (2000) proposed zero-inflated Poisson models
with random effects to account for the within-subject dependence in the Poisson state.
However, the random effect was not used for the part of the model for the zero infla-
tion. Yau and Lee (2001) used random effects to explain the within-subject dependence
in both components in the hurdle model. However, the random effects in both compo-
nents are independent. Min and Agresti (2005) extended Yau and Lee’s (2001) model for
repeated zero-inflated count data with two-part random effects for a binary component
and a truncated count component and considered correlated random effects models un-
like the models in Yau and Lee (2001). However, the models using random effects cannot
have marginal mean directly which can be of interest in longitudinal or clustered data.
As an alternative to the inclusion of random effects, several authors considered marginal
models for countable data with extra zeros. The approach is to incorporate generalized
estimating equations (GEEs) with a dependence working correlation matrix into the fit-
ting algorithm (Dobbie and Welsh, 2001). Therefore, Dobbie and Welsh (2001) have
marginal relationship between mean of response and covariates directly. Hall and Zhang
(2001) proposed marginal model with generalized estimating equations (GEE) approach
using EM algorithm. However, the GEE approach cannot be used directly under missing
at random (MAR) which is common in longitudinal studies and semiparametric GEE
approaches require explicit specification of the the missing data mechanism (mdm). In
addition, the re-weighting based approaches (based on the mdm) to handle MAR in GEEs
only ‘impute’ missing values at the observed data points. Likelihood based approaches
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do not have this restriction. In this paper, we propose a marginalized random effects
model (MREM) which is one of the likelihood-based approaches and has the advantages
of random effects and marginal models.

The MREMs were proposed by Heagerty (1999). The MREMs are commonly used
to analyze longitudinal categorical data. Important features of these models are that
marginal means are modeled directly and that the correlation among responses from
same subject is accounted using random effects (Heagerty, 1999; Lee and Daniels, 2008;
Lee et al., 2009; Lee et al., 2010). There are several advantages of the MREMs. First, the
interpretation of regression coefficients does not depend on specification of the dependence
in the model unlike in conditional models. Second, they can be much less susceptible to
bias resulting from random effects model mis-specification (Heagerty and Zeger, 2000;
Heagerty and Kurland, 2001; Lee and Daniels, 2008; Lee et al., 2009; Lee et al., 2010).
Third, likelihood based inference is valid under ignorability and the missing data mech-
anism need not be explicitly specified. The use of a likelihood based approach will have
advantages for longitudinal data that is missing at random (MAR) and in particular,
ignorable (Lee and Daniels, 2008; Lee et al., 2009).

We propose likelihood-based marginalized models using the idea of MREMs for clus-
tered count data with excess zeros which have marginal relationship of mean of response
and covariates as in Dobbie and Welsh (2001). They also explain clustered dependence
of responses using random effects as in Min and Agresti (2005). The proposed models
are a useful class of models for zero-inflated clustered count data. The nonzero counts
necessarily follow a zero-truncated Poisson distribution. In practice, nonzero count data
are often overdispersed and alternative distributions, such as the zero-truncated negative
binomial distribution, may be more appropriate more than Poisson hurdle model (Ridout
et al., 2001). Thus, we also consider a zero-inflated negative binomial hurdle model.

The paper is organized as follows. In Section 2, we propose marginalized Poisson hurdle
(MPH) and marginalized negative binomial hurdle (MNBH) models for the zero-inflated
clustered count data. In Section 3, we conduct a simulation study to examine bias and
efficiency of estimation of marginal mean parameters. In Section 4, we will analyze two
real data sets using our proposed models. Finally, a brief summary is included in Section
5.

2. Proposed Models

Denote the response vector for the ith subject by yi = (yi1, · · · , yini
)T where yit is count

response at time t for t = 1, · · · , ni. We assume that yit is conditionally independent
given bi = (bi1, bi2)

T and the responses on different subjects are independent. Let xit be
covariates corresponding to yit.

2.1. Marginalized Poisson Hurdle Models
As we described in Section 1, we first develop the marginalized Poisson hurdle (MPH)

model to accommodate clustered count data with excess zeros. We assume the marginal
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probability of response for countable responses is given by

P (yit|xit) =





1− pM
it , if yit = 0;

pM
it

g(yit;λ
M
it )(

1−e−λM
it

) , if yit = 1, 2, · · · ,

where

logitpM
it = xT

itγ, (1)

g(yit; λ
M
it ) =

e−λM
it

(
λM

it

)yit

yit!

λM
it = exp(xT

itβ), (2)

β and γ are p×1 dimensional unknown marginal parameter vectors, xit is p×1 dimensional
vector of covariates. To explain clustered association of responses we now use random
effects from the idea of the MREMs (Heagerty, 1999). We assume a conditional hurdle
model corresponding to (1) and (2). Given bi = (bi1, bi2)

T ,

P (yit; bi) =

{
1− pc

it(bi1), if yit = 0;

pc
it(bi1)

g(yit;λit(bi2))

(1−e−λc
it

(bi2))
, if yit = 1, 2, · · · , (3)

where

logitpc
it(bi1) = ∆it1 + zT

it1bi1, (4)

g(yit; λ
c
it(bi2)) =

e−λc
it(bi2)λc

it(bi2)
yit

yit!

log λc(bi2) = ∆it2 + zT
it2bi2, (5)

bi =

(
bi1

bi2

)
i.i.d.∼ N (0, Σ) , (6)

with zit1 and zit2 being subsets of xit, bi1 and bi2 being corresponding random vectors, and

Σ =

(
Σ1 Σ12

Σ12 Σ2

)
. (7)

where Σ, Σ1, and Σ2 are unknown positive-definite matrices. Note that ∆it1 and ∆it2 are
the subject-specific intercept and function of both the marginal parameters (γ, β) and the
dependence parameters (Σ). Detailed description is given later. As the simple random
intercept form of models is often adequate in practice, we only discuss the case with bi1

and bi2 being univariate and zit1 = zit2 = 1. Then, we have

Σ =

(
σ2

1 σ12

σ12 σ2
2

)
.

Note that the two random effects, bi1 and bi2, are likely correlated and account for the
within-subject dependence and Σ represents the covariance matrix between bi1 and bi2
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like Min and Agresti’s (2005) model. From the marginal and conditional distributions,
we respectively have the marginal and conditional expectations

E(Yit|xit) = pM
it

λM

1− e−λM ,

E(Yit|bi) = pc
it(bi1)

λc(bi2)

1− e−λc(bi2)
.

∆it1 and ∆it2 in (4) and (5) are determined implicitly by γ and σ1, and β and Σ,
respectively. The parameters ∆it1 are a function of both the marginal mean parameters,
γ, in (4) and the random effects variances σ1, in (7) and can be obtained using the
following identity

pM
it =

∫
pc

it(bi1)f(bi1)dbi1, (8)

where f(bi1) is a univariate normal distribution with mean 0 and variance σ2
1. Similarly,

∆it2 in (5) is a function of γ, β, Σ in (1), (2), (4), and (5) and can be obtained using the
following identity

E(Yit|xit) = E {E(Yit|bi)} ,

⇔ pM
it

λM
it

1− e−λM
it

=

∫
pc

it(bi1)
λc

it(bi2)

1− e−λc
it(bi2)

f(bi)dbi, (9)

where f(bi) is a bivariate normal distribution with mean 0 and variance var(bi). Given γ,
β, and σ, ∆it1 and ∆it2 are deterministic functions of the parameters. Thus, we use (8)
and (9) to solve ∆it1 and ∆it2 using using a Newton-Raphson. For the explicit forms of
the terms in the Newton-Raphson algorithm, see the Appendix. This technique was also
used in MREMs for longitudinal categorical data (Heagerty, 1999; Lee and Daniels, 2008;
Lee et al., 2009).

The marginal mean models, (1) and (2), are modeled using logistic regression and
Poisson regression, while clustered association are captured by the random effects in (4)
and (5). In contrast to Min and Agresti’s (2005) models, the regression parameters (γ and
β) have marginal interpretations. Dobbie and Welsh (2001) also proposed marginal model
using GEE approach. However, the GEE approach cannot be used directly under missing
at random (MAR) which is common in longitudinal studies. Because our proposed models
are combined models of Min and Agresti’s (2005) and Dobbie and Welsh’s (2001), there
are several advantages of these models. First, clustered association is explained using
conditional models while the marginal mean as a function of covariates still structures
directly. As a result, the interpretation of the regression coefficients, γ and β, does not
depend on the specification of the dependence model. Second, likelihood based inference is
valid under ignorability and the missing data mechanism need not be explicitly specified
unlike the GEE approach in Dobbie and Welsh (2001). The use of a likelihood based
approach will have advantages for longitudinal data that is missing at random (MAR)
and in particular, ignorable.
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2.2. Marginalized Negative Binomial Hurdle models
Now we propose marginalized negative binomial hurdle models to account for nonzero

overdispersed data. The marginal probability of responses are given by

P (yit; xit) =





1− qM
it , if yit = 0;

qM
it

k(yit;µ
M
it )

1−
(

1

1+νµM
it

)ν−1 , if yit = 1, 2, · · · ,

where

logitqM
it = xT

itγ,

k(yit; µ
M
it ) =

Γ(ν−1 + yit)

Γ(ν−1)yit!

(
1

1 + νµM
it

)ν−1 (
νµM

it

1 + νµM
it

)yit

,

log µM
it = xT

itγ.

The conditional probabilities of responses given random effects are given by

P (yit; bi) =





1− qc
it(bi1), if yit = 0;

qc
it(bi1)

k(yit;µ
c
it(bi2))

1−
(

1
1+νµc

it
(bi2)

)ν−1 , if yit = 1, 2, · · · ,

where

logitqc
it(bi1) = ∆it1 + zT

i1bi1,

k(yit; µ
c
it(bi2)) =

Γ(ν−1 + yit)

Γ(ν−1)yit!

(
1

1 + νµc
it(bi2)

)ν−1 (
νµc

it(bi2)

1 + νµc
it(bi2)

)yit

,

log µc
it(bi2) = ∆it2 + zT

i2bi2,

where bi is random effects which are jointly normal and possibly correlated and is given
in (6). We also consider the simple random intercept form here.

Similar to the identities, (8) and (9), for the MPH, we have the following relationships

qM
it =

∫
qc
it(bi1)f(bi1)dbi1, (10)

E(Yit|xit) = E {E(Yit|bi2)} ,

⇔ qM
it

µM
it

1−
(

1
1+νµM

it

)ν−1 =

∫
qc
it(bi1)

µc
it(bi2)

1−
(

1
1+νµc

it(bi2)

)ν−1 f(bi)dbi. (11)

We also solve ∆it1 and ∆it2 using (10) and (11) given γ, β and σ using a Newton-Raphson.
For the explicit forms of the terms in the Newton-Raphson algorithm, also see the Ap-
pendix.

2.3. Reparametrization of the random effects and their covariance matrix
From a computational perspective, it is convenient to orthogonalize the random effects

by setting bi = Σ
1
2 zi, where Σ

1
2 is the Cholesky factor of the 2×2 matrix Σ (Gibbons and

Bock, 1987), which are given by

Σ
1
2 =

(
s11 0
s21 s22

)
,
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and zi is a 2×1 vector of independent standard normals. The reparameterized conditional
model for MPH model is then given by

pc
it(bi1) =

exp(4it1 + s11zi1)

1 + exp(4it1 + s11zi1)
let
= pc

it(zi),

λc
it(bi2) = exp(4it2 + s21zi1 + s22zi2)

let
= λc

it(zi),

Similarly, we reexpress (10) in MNBH model as given by,

µc
it(bi2) = exp(4it2 + s21zi1 + s22zi2)

let
= µc

it(zi).

This transformation allows us to estimate the Cholesky factor Σ
1
2 instead of the covariance

matrix Σ. Since the Cholesky factor is the square root of the covariance matrix, it allows
a more stable estimation of near-zero variance terms (Hedeker and Gibbons, 1994).

2.4. Estimation
The likelihood function for the MPH model, which is the integral over random effects

of a product of two distributions, is given by

L(θ; y) =
N∏

i=1

∫ ni∏
t=1

(1− pc
it(zi))

I(yit=0)

{
pc

it(zi)
g(yit; λ

c
it(zi))

1− e−λc
it(zi)

}1−I(yit=0)

φ(zi)dzi, (12)

where φ(·) is a multivariate standard normal density with mean vector 0 and variance-
covariance matrix I, g(·; λc

it(zi)) is a Poisson probability mass function with mean λc
it(zi),

θT = (γT , βT , sT ), and sT = (s11, s21, s22). Since the marginalized likelihood in (12) is not
available in closed form, we use Gauss-Hermite quadrature to (numerically) integrate out
the random effects.

Maximizing the log-likelihood with respect to θ yields the likelihood equation

N∑
i=1

∂ log L(θ; yi)

∂θ
=

N∑
i=1

L−1(θ; yi)

∫
∂L(θ, zi; yi)

∂θ
φ(zi)dzi = 0,

where

L(θ; yi) =

∫ ni∏
t=1

(1− pc
it(zi))

I(yit=0)

{
pc

it(zi)
g(yit; λ

c
it(zi))

1− e−λc
it(zi)

}1−I(yit=0)

φ(zi)dzi,

L(θ, zi; yi) =

ni∏
t=1

(1− pc
it(zi))

I(yit=0)

{
pc

it(zi)
g(yit; λ

c
it(zi))

1− e−λc
it(zi)

}1−I(yit=0)

. (13)

The (2p + 3) dimensional likelihood equations are given in the Appendix.
The matrix of second derivatives of the observed data log-likelihood has a very complex

form. Fortunately, the sample empirical covariance matrix of the individual scores in any
correctly specified model is a consistent estimator of the information and involves only
the first derivatives. So the Quasi-Newton method can be used to solve the likelihood
equations using

θ(c+1) = θ(c) +
[
Ie

(
θ(g); y

)]−1 ∂ log L

∂θ(c)
,
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where Ie (θ) is an empirical and consistent estimator of the information matrix at step g
and is given by

Ie (θ; y) =
N∑

i=1

∂L(θ; yi)

∂θ

∂L(θ; yi)

∂θT
.

At convergence, the large-sample variance-covariance matrix of the parameter estimates

is then obtained as the inverse of Ie

(
θ̂; y

)
. For the explicit forms of the terms in the

Quasi-Newton algorithm, see the Appendix.
Similarly, we have the log likelihood function, score function, and information matrix

for the MNBH models and detailed calculations in the Appendix.

3. Simulation Study

We conducted a simulation study to examine the bias in estimating the parameters
in the MPH model. We simulated clustered zero-inflated data under an MPH model.
Covariates were group (2 levels) and time. The marginal models from (1) and (2) were
specified as

logit(pM
it ) = γ0 + γ1groupi + γ2timeit,

log(λ) = β0 + β1groupi + β2timeit,

γ = (γ0, γ1, γ2) = (−2.0, 0.3, 0.1),

β = (β0, β1, β2) = (0.2, 0.4, 0.5),

where timeit = (t− 1)/10 for t = 1, · · · , 6 and groupi = 0 or 1 such that the sample size
per group was approximately equal for all times t. The dependence models were using
from (4) and (5) with

Σ =

(
2.5 2
2 3

)
.

We generated 200 simulated data sets each with sample size of 400. We fit two models, the
true model (Model 1) and an independent hurdle model ignoring the temporal dependence
(Model 2). Based on this specification, the observed zero rates were approximately 60
percent.

Table 1 presents mean estimates, the absolute values of biases (AVB), and 95% Monte
Carlo error intervals of the parameters. The estimates were essentially unbiased with
very similar AVB’s for Models 1 and 2 except β0. The 95% Monte Carlo error intervals
contained the true values for the parameters. However, the coefficient of β0 in Model 2
had a big bias. Therefore, we conclude that the estimated marginal parameters in our
proposed model (Model 1) are on average closer to the true parameter value.

4. Example

4.1. A Pharmaceutical Study
This data set first described by Min and Agresti (2005) to illustrate hurdle models with

random effects is used here to demonstrate the use of our marginalized hurdle models. One
hundred and eighteen patients were randomly assigned to one of two treatment groups,
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Table 1
Bias of maximum likelihood estimators. Displayed are the average regression coefficient
estimates and the absolute value of biases (AVB=|θ̄ − θ|) where M is the number of

simulated data sets. 95% Monte Carlo error intervals (θ̄±1.96
√

var(θ̄)/M) in parentheses.

Model 1 Model 2
para. true Mean AVB Mean AVB
γ0 -2.0 -2.01 0.01 -2.01 0.01

(-2.03,-1.99) (-2.03,-1.99)
γ1 0.3 0.30 0.00 0.30 0.00

(0.27,0.32) (0.27,0.32)
γ2 0.1 0.12 0.02 0.12 0.02

(0.08,0.17) (0.08,0.17)
β0 0.2 0.21 0.01 0.03 0.17

(0.17,0.25) (-0.03,0.09)
β1 0.4 0.43 0.03 0.45 0.05

(0.39,0.47) (0.37,0.52)
β2 0.5 0.46 0.04 0.46 0.04

(0.42,0.51) (0.39,0.54)

Table 2
Sample means and variances of side effect number and nonzero side effect number, and
proportions of nonzero side effect number for each year.

Visit 1 2 3 4 5 6
Mean 0.093 0.229 0.229 0.314 0.424 0.432

variance 0.102 0.366 0.315 0.696 1.033 1.153
Mean (Nonzero) 1.100 1.421 1.350 1.762 2.000 2.217

variance 0.100 0.591 0.345 1.390 1.750 1.996
Proportion (Nonzero) 0.085 0.161 0.169 0.178 0.212 0.195

treatment A (TRT 1, 59 patients) and treatment B (TRT 2, 59 patients). Response
variable was the number of side effect episodes which was measured at each of six visits.
As Min and Agresti (2005) indicated, about 83% of the observations were zeros and there
was a variety of count number as visit number increased. Therefore, time was incorporated
as a covariate in the model.

Table 2 presents sample means and variances of side effect numbers and nonzero side
effect numbers, and proportions of nonzero side effect numbers for each visit. Since the
sample means of side effects numbers were smaller than the corresponding sample vari-
ances, we fitted the negative binomial GLMM. The sample means of nonzero side effects
numbers is larger than the corresponding variances. This indicates that overdispersion did
not happen in nonzero count data. Therefore, we fitted the MPH model. We also fitted
the Poisson GLMM, Dobbie and Welsh’s model (2001), and Min and Agresti’s Poisson
hurdle random effects model (2005), respectively.
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Table 3
Comparison of maximized loglikelihoods and AICs

MPH M&A Poisson GMM NB GMM
Max. loglik. −409.1 −409.2 −426.1 −416.6
AIC 836.2 836.4 860.1 843.1

The Quasi-Newton algorithm is not computationally trivial because of numerical inte-
gration. We simultaneously used R 2.6.0 software (http://www.r-project.org) and FOR-
TRAN 77. The R software was used to compute complicated calculation of matrices and
the Quasi-Newton iteration and the FORTRAN 77 was used to make subroutines (.dll
files) to implement the calculations of ∆ using the Newton-Raphson and of derivatives of
∆. Each Quasi-Newton step (in which all the ∆itj need to be computed) on a PC with 1.86
GHz processor took about 1.5 minutes for the MPH model with 40 point Gauss-Hermite
quadrature. To reduce the number of iterations until convergence, we used initial values
that are obtained by fitting an independent hurdle model in R resulting in a minimal num-
ber of iterations until convergence. In our analysis below, we obtained convergence in 40

iterations using a fairly strict convergence criterion,

√
(θ̂old − θ̂new)T (θ̂old − θ̂new) ≤ 10−5,

where θ̂new and θ̂old are current and previous fitted values of parameters, respectively.
Table 3 presents maximized loglikelihood and AIC for all models except Dobbie and

Welsh model. The MPH and Min and Agresti model fit better than GLMMs. The maxi-
mized loglikelihood and AIC for the MPH and M&A model were very similar. However,
the MPH and M&A was based on marginal model and conditional models, respectively.
Here we focus on the marginal relationship between mean of side effects numbers and
covariates.

Table 4 presents maximum likelihood estimates of marginal mean parameters for MPH
and D & W. The estimated values for the two models were very similar. Because there
was no missing data in this data set, GEE and maximum likelihood estimates were similar
(Diggle et al., 2002). The estimated parameter comparing the treatment in the logistic
regression was significant with an estimate of 0.665 (SE=0.310). This indicated that
the estimated marginal probability of side effect occurrence for treatment B was higher
than for treatment A. In the estimates of marginal mean of side effect parameters, the
coefficients of Trt2 (0.868, SE=0.415) and log(Time) (0.540, SE=0.205) were significant,
respectively. This indicated that the marginal mean of side effect number for treatment B
was higher than for treatment A controlling at fixed time and the marginal mean increased
as time increased, respectively. The ML estimate for Σ for the MPH was

Σ̂ =

(
2.719 0.999
0.999 0.509

)
.

This presented large subject-to-subject variation in the odds of probability of side effect
occurrence (2.179) compared with the variation of mean of side effect number (0.509).
The estimated correlation of two random effects, bi1 and bi2, was 0.894 and was very
positive correlated. It is very similar value to Min and Agresti’s result (0.848).
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Table 4
Maximum likelihood estimates and standard errors for MPH and D & W models.

MPH D & W
Term Est. S.E. Est. S.E.

Logistic Part
Int. −2.038∗ 0.406 −2.033∗ 0.471
Trt2 0.665∗ 0.310 0.709∗ 0.210
log(Time) 0.018 0.117 0.010 0.160

Poisson Part
Int. −1.949∗ 0.598 −1.999∗ 0.593
Trt2 0.868∗ 0.415 0.904∗ 0.278
log(Time) 0.540∗ 0.205 0.527∗ 0.182
∗ indicates significance with 95% confidence level.

4.2. New Orleans Murder Rate Study
The data set for this study includes 37 census tract/police zones for each decennial

census year from 1940 to 2000 (7 × 37 = 259). While the selection of these 37 census
tract/police zones creates a bias toward the older tracts in the city, these tracts were the
only tracts that were also police zones, thus providing consistent murder counts and census
data for the 60 year period. Examining murder over this 60 year period is theoretically
relevant because the rate of murder in the city changed dramatically in the early 1970s.
For example, the average number of murders in the 37 census tract/polices zones for the
decennial years 1940 to 1970 was 14.5. However, the average from 1980 to 2000 was 66.6.
This occurred in the context of a population decline in the 37 tracts from 128,204 in
1970 to 115,209 in 1980. The question is: how do we account for this dramatic change in
the volume of murder? About 63% of all 259 count values were zero. Therefore, hurdle
models could be considered to fit.

For simplicity, we assume that the murder numbers in the district zones are independent
(Mears and Bhati, 2006). It is justified from the perspective of criminological theory
in which murders in contiguous zones could have spillover and human behavior is not
constrained by artificial or arbitrary boundaries. The zones, however, when they were
established were drawn along census tract lines. These census tracts were thought to
be relatively homogeneous neighborhoods in a sociological sense. (Green and Truesdell,
1934).

To find the demographic factors that elevate murder rate, longitudinally measured count
response of murders of district zones in New Orleans were analyzed with our proposed
models. As predictors, we included the proportion of African American - a proxy for racial
isolation (Black), income quantiles (Pnilf), the proportion of people in the age group 15
to 24 (Pro15to24), and decennial years (Year= 0.0, 0. · · · , 0.6). Two covariates, Black
and Pro15to24, were two structural covariates of neighborhoods selected because racial
isolation as measured by percent African American and the proportion of the population
15 to 24 years of age are consistent with the criminological literature (Wilson, 1987, 1994;
Cohen and Tita, 1999; Cork, 1999; Messner et al., 1999; Lee, 2000; Baller et al., 2001;
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Table 5
Mean and standard deviation of independent variables.

1940 1950 1960 1970 1980 1990 2000
Black Mean 0.333 0.277 0.422 0.490 0.439 0.542 0.575

Std. 0.229 0.235 0.398 0.377 0.360 0.350 0.364
Pnilf Mean 0.327 0.341 0.361 0.318 0.436 0.352 0.341

Std. 0.058 0.056 0.047 0.066 0.117 0.113 0.118
Pro15to24 Mean 0.097 0.094 0.063 0.085 0.181 0.064 0.076

Std. 0.039 0.039 0.014 0.022 0.038 0.023 0.038

Table 6
Sample means and variances of murder numbers and nonzero murder numbers, and pro-
portions of nonzero murder numbers for each year.

Year 1940 1950 1960 1970 1980 1990 2000
Mean (murder no.) 0.297 0.432 0.324 0.676 1.594 2.270 1.568

variance 0.326 0.808 0.503 1.836 5.359 12.758 3.530
Mean (Nonzero murder) 1.222 1.778 1.500 2.273 3.278 4.200 2.900

variance 0.194 0.944 0.571 2.618 5.507 15.642 2.621
Proportion (Nonzero murder) 0.243 0.243 0.216 0.297 0.486 0.541 0.541

Griffiths and Chavez, 2004; Mears and Bhati, 2006).
Table 5 indicates means and standard deviation for the predictors. Population at each

year was used as offset and Pop = Population/10, 000 was used for numerical reasons.
Table 5 shows the means and standard deviations of the independent variables for the
each census year, indicating as follows: 1) the proportion of African Americans was likely
to increase in the census year, 2) income quantiles did not change from year to year, and
3) the proportion of 15 to 24 years old did not change from year to year except 1980.

Year effect was also important. Table 6 indicates sample means and variances of murder
numbers and nonzero murder numbers, and proportions of nonzero murder numbers for
each year. The means of murder and nonzero murder numbers had cubic trend over years.
A similar pattern occurred in the proportions of nonzero murder numbers. We considered
linear, quadratic, and cubic terms of covariate year. We also considered the fourth power
of year, but it was not significant

Using marginal models may allow us to clarify some of the inconsistencies in the pre-
dictive strength of covariates of murder over this 60 year period. We fit two marginalized
hurdle models proposed in this paper, two hurdle models with random effects which were
proposed in Min and Agresti (2005), and two generalized mixed models with Poisson
and negative binomial distributions, respectively . Let Model 1 be an MPH and Model
2 be an MNBH. Both had variance-covariance structures for random effects. Models 3
and 4 are Min and Agresti’s hurdle models using Poisson and negative binomial distribu-
tions, respectively. Finally, Models 5 and 6 are the Poisson regression model and negative
binomial regression models with random effects, respectively.
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Table 7
Comparison of maximized loglikelihoods and AICs

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
Max. loglik. −308.9 −299.7 −308.4 −299.8 −311.9 −299.9
AIC 651.8 635.4 650.7 635.6 639.8 617.7

∗ indicates significance with 95% confidence level.

Table 8
Maximum likelihood estimates and standard errors for negative binomial GLMM.

Term Int. PerBlack Per15to24 Pnilf Year Year2 Year3 ν σ
Estimate −1.807∗ 0.810 5.540∗ 0.096 −9.678∗ 56.825∗ −58.001 0.445 1.666∗
Std. err. 0.633 0.487 1.959 1.151 4.656 17.668 18.360 0.157 0.279

∗ indicates significance with 95% confidence level.

Table 7 presents maximized loglikelihood and AIC for all models. We first considered
marginalized and marginal models (Models 3, 4, 5, 6). Since Models 3 and 5, and 4
and 6 are nested models, respectively, the likelihood ratio tests were conducted and the
comparisons indicated that we cannot claim Model 3 fit better than Model 5 (∆D35 =
2×(311.9−308.4) = 7, p-value= 0.637 on 9 d.f.). Similarly, we cannot claim that Model 4
fit better than Model 6 (∆D46 = 0.4, p-value= 0.9999 on 9 d.f.). Since Models 1 and 2 were
not nested, we compared them using AIC. The AIC for Model 1 was 651.8 and for Model
2 635.4, indicating that Model 2 had the better fit. Similar comparison was conducted
for conditional Models 2 and 6. The comparison of AIC for Model 2 and 6 indicates
that Model 6 fit better than Model 2 (617.7 for Model 6). From model comparison, the
hurdle models (Models 1-4) did not find significant evidence of zero inflation. An ordinary
negative binomial GLMM seems sufficient for this data set.

Table 8 presents maximum likelihood estimates of marginal mean parameters for neg-
ative binomial GLMM. The overdispersion parameter (ν̂ = 0.445, p-value= 0.008) was
significant. This indicated that the New Orleans murder data were overdispersed. The
estimate for σ was σ̂ = 1.666 (p-value< 0.001). This indicated the census tract/police
zone variation in the mean rate of murder. The coefficient of Pro15to24 (5.540, p-
value= 0.0076) in the regression was significant. This indicated that the estimated rate
of murder increased by the proportion of people in the age group 15 to 24. The result
provides support for life-course criminology. This perspective asserts that offending and
anti-social behavior varies by age with peaking around age 20 (Farrington, 2003). The
linear (-9.678, p-value= 0.045), quadratic (56.825, p-value= 0.0027), and cubic (-58.001,
p-value= 0.0032) terms of year were also significant. This indicated that murder rate
trend was cubic in years and explained the dramatic change in murder rates in the 1970s.

5. Conclusion

In this paper, we develop two new marginalized models to accommodate zero-inflated
clustered count data. An advantage of these models is the ability to use conditional
models for serial association of responses while still structuring the marginal mean as
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a function of covariates directly. As a result, the interpretation of the regression coeffi-
cients in two marginal components does not depend on the specification of the dependence
model. Two-part random effects, which have a binary component and a truncated Poisson
or negative binomial component, are used to explain the serial dependence of responses
and covariance of responses at the same time. Parameter estimation was based on maxi-
mum likelihood using a Quasi-Newton algorithm. To evaluate the marginalized likelihood,
we used Gauss-Hermite quadrature to evaluate integrations. Gauss-Hermite quadrature is
commonly used for low dimensional random effects models such as random intercept mod-
els. However, a major disadvantage of the Gauss-Hermite quadrature is that the number
of quadrature points increases as an exponential function of the number of dimensions. As
an alternative, Monte Carlo methods are often used for models with higher-dimensional
integrals and use randomly sampled points to approximate the integrals.

Although two data sets had many zeros in Section 4, hurdle models worked in the phar-
maceutical data but not in the New Orleans murder data. We know that a high percentage
of zeros does not disqualify Poisson or negative binomial models. The pharmaceutical data
analysis provided that the estimated probability of side effects for occurrence increased in
treatment 2 and the estimated mean of side effect number increased by the time. In the
New Orleans murder data, our analysis provided sociologically meaningful contributions
that predict murder rates in New Orleans. The estimated rate of murder increased by the
proportion of people in the age group 15 to 24.

We can extend marginalized hurdle models to allow multivariate zero-inflated clustered
count data. These are on-going works.
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APPENDIX A: Calculations for Estimation of MPH Models

Detailed Calculations of ∆

Given γ, β, and σ, we calculate ∆it1 and ∆it2 from the relationship (8) and (9) using a
Newton-Raphson. Let

h1(∆it1) =

∫
P c

it(bit1)f(bit1)dbit1 − PM
it ,

h2(∆it) =

∫
pc

it(bi1)
λc

it(bi2)

1− e−λc
it(bi2)

f(bi)dbi − pM
it

λM
it

1− e−λM
it

.

Estimates of ∆it1 and ∆it2 satisfy (h1(∆it1), h2(∆it)) = (0, 0) and can be obtained using
Newton-Raphson as follows

(
∆

(c+1)
it1

∆
(c+1)
it2

)
=

(
∆

(c)
it1

∆
(c)
it2

)
−

(
∂h1(∆it1)

∂∆it1

∂h1(∆it1)
∂∆it2

∂h2(∆it)
∂∆it1

∂h2(∆it)
∂∆it2

)−1

∆it=∆
(c)
it

(
h1(∆

(c)
it1)

h2(∆
(c)
it )

)
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where

∂h1(∆it1)

∂∆it1

=

∫
P c

it(bit1)(1− P c
it(bit1))f(bit1)dbit1, (14)

∂h1(∆it1)

∂∆it2

= 0,

∂h2(∆it)

∂∆it1

=

∫
pc

it(bi1)(1− pc
it(bi1))

λc
it(bi2)

1− e−λc
it(bi2)

f(bi)dbi, (15)

∂h2(∆it)

∂∆it2

=

∫
pc

it

λc
it(bi2)

1− e−λc
it(bi2)

(
1− λc

it(bi2)e
−λc

it(bi2)

1− e−λc
it(bi2)

)
f(bi)dbi, (16)

To calculate the integrals in (14)-(16), we use Gauss-Hermite quadrature to evaluate this
integrals.

Detailed Calculations of Quasi-Newton

The contribution of subject i to the log likelihood is given by

log L(θ; yi) = log

∫
L(θ, zi; yi)φ(zi)dzi,

where

L(θ, zi; yi) = exp

[
ni∑

t=1

(1− I(yit=0)) (∆it1 + s11zi1)−
ni∑

t=1

log
(
1 + e∆it1+s11zi1

)

+

ni∑
t=1

(1− I(yit=0))
{−λit(zi) + yit log λit(zi)− log(yit!)− log

(
1− e−λit(zi)

)}
]

.

The forms of the derivatives for Quasi-Newton algorithm are

∂ log L

∂γ
=

N∑

i=1

L(θ; yi)−1

∫
L(θ, zi; yi)

{
ni∑

t=1

(uit − pc
it(zi))

∂∆it1

∂γ
+

ni∑

t=1

uit

(
yit − λc

it(zi)
1− e−λc

it(zi)

)
∂∆it1

∂γ

}
φ(zi)dzi,

∂ log L

∂β
=

N∑

i=1

L(θ; yi)−1

∫
L(θ, zi; yi)

{
ni∑

t=1

uit

(
yit2 − λc

it(zi)
1− e−λc

it(zi)

)
∂∆it2

∂β

}
φ(zi)dzi,

∂ log L

∂s11
=

N∑

i=1

L(θ; yi)−1

∫
L(θ, zi; yi)

{
ni∑

t=1

(uit − pc
it(zi))

(
∂∆it1

∂s11
+ zi1

)

+
ni∑

t=1

uit

(
yit − λc

it(zi)
1− e−λc

it(zi)

)
∂∆it2

∂s11

}
φ(zi)dzi,

∂ log L

∂s21
=

N∑

i=1

L(θ; yi)−1

∫
L(θ, zi; yi)

{
ni∑

t=1

uit

(
yit − λc

it(zi)
1− e−λit(zi)

) (
∂4i2

∂s21
+

bi2

∂s21

)}
φ(zi)dzi,

∂ log L

∂s22
=

N∑

i=1

L(θ; yi)−1

∫
L(θ, zi; yi)

{
ni∑

t=1

uit

(
yit − λc

it(zi)
1− e−λit(zi)

) (
∂4i2

∂s22
+

bi2

∂s22

)}
φ(zi)dzi,
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where uit = 1 if yit > 0; = 0 if yit = 0, L(θ, zi|yi) is given by (13). The integrals are
estimated using Gauss-Hermite quadrature.

To make the derivatives simpler, (8) and (9) can be reexpressed as

pM
it =

∫
pc

it(s11zi1)φ(zi1)dzi1, (17)

pM
it

λM
it

1− e−λM
it

=

∫
pc

it(zi1)
λc

it(s
T
2 zi)

1− e−λc
it(s

T
2 zi)

φ(zi)dzi, (18)

where sT
2 = (s21, s22), zT

i = (zi1, zi2) is a random vector with the standard normal distri-
bution, and φ(·) is the standard normal density function. Note that the integrals in (17)
and (18) are one dimensional. To compute the score vector and information matrix, we
also need derivatives of ∆it with respect to γ, β, and s. They can be obtained from the
relationships (17) and (18)

∂pM
it

∂γ
=

∫
∂pc

it(s11zi1)

∂∆it1

∂∆it1

∂γ
φ(zi1)dzi1,

⇒ ∂∆it1

∂γ
=

∂pM
it

∂γ∫ ∂pc
it(s11zi1)

∂∆it1
φ(zi1)dzi1

. (19)

Similarly, we have

∂∆it2

∂γ
=

∂pM
it

∂γ
νM

it − ∂∆it1

∂γ

∫
pc

it(s11zi1)(1− pc
it(s11zi1))ν

c
it(s

T
2 zi)φ(zi)dzi∫

pc
it(s11zi1)νc

it(s
T
2 zi)

(
1− νc

it(s
T
2 zi)e−λc

it(s
T
2 zi)

)
φ(zi)dzi

,

∂∆it2

∂β
=

pM
it νM

it

(
1− νM

it e−λM
it

)
xit

∫
pc

it(s11zi1)νc
it(s

T
2 zi)

(
1− νc

it(s
T
2 zi)e−λc

it(s
T
2 zi)

)
φ(zi)dzi

,

∂∆it1

∂s11

= −
∫

pc
it(s11zi1)(1− pc

it1(s11zi1))zi1φ(zi1)dzi1∫ ∂pc
it1(s11zi1)

∂∆it1
φ(zi1)dzi1

, (20)

∂∆it2

∂s11

= −
∫

pc
it(s11zi1)(1− pc

it1(s11zi1))
(

∂∆it1

∂s11
+ zi1

)
νc

it(s
T
2 zi)φ(zi)dzi

∫
pc

it(s11zi1)νc
it(s

T
2 zi)

(
1− νc

it(s
T
2 zi)e−λc

it(s
T
2 zi)

)
φ(zi)dzi

,

∂∆it2

∂s21

= −
∫

pc
it(s11zi1)ν

c
it(s

T
2 zi)

(
1− νc

it(s
T
2 zi)e

−λc
it(s

T
2 zi)

)
zi1φ(zi)dzi

∫
pc

it(s11zi1)νc
it(s

T
2 zi)

(
1− νc

it(s
T
2 zi)e−λc

it(s
T
2 zi)

)
φ(zi)dzi

,

∂∆it2

∂s22

= −
∫

pc
it(s11zi1)ν

c
it(s

T
2 zi)

(
1− νc

it(s
T
2 zi)e

−λc
it(s

T
2 zi)

)
zi2φ(zi)dzi

∫
pc

it(s11zi1)νc
it(s

T
2 zi)

(
1− νc

it(s
T
2 zi)e−λc

it(s
T
2 zi)

)
φ(zi)dzi

,

(21)

where

νM
it =

λM
it

1− e−λM
it

,

νc
it(s

T
2 zi) =

λc
it(s

T
2 zi)

1− e−λc
it(s

T
2 zi)

.
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APPENDIX B: Calculations for Estimation of MNBH Models

Detailed Calculations of ∆it

Given γ, β and σ, we calculate ∆it1 and ∆it2 from the relationships (10) and (11) using
a Newton-Raphson. Let

h3(∆it1) =

∫
qc
it(bi1)f(bi1)dbi1 − qM

it ,

h4(∆it2) =

∫
qc
it(bi1)

µc
it(bi2)

1−
(

1
1+νµc

it(bi2)

)ν−1 f(bi)dbi2 − qM
it

µM
it

1−
(

1
1+νµM

it

)ν−1 .

Estimates of ∆it1 and ∆it2 satisfies (h3(∆it1), h4(∆it)) = (0, 0) and can be obtained using
Newton-Raphson as follows

(
∆

(c+1)
it1

∆
(c+1)
it2

)
=

(
∆

(c)
it1

∆
(c)
it2

)
−

(
∂h3(∆it1)

∂∆it1

∂h3(∆it1)
∂∆it2

∂h4(∆it)
∂∆it1

∂h4(∆it)
∂∆it2

)−1

∆it=∆
(c)
it

(
h3(∆

(c)
it1)

h4(∆
(c)
it )

)

where

∂h3(∆it1)

∂∆it1

=

∫
qc
it(bi1)(1− qc

it(bi1))f(bi1)dbi1,

∂h3(∆it1)

∂∆it2

= 0,

∂h4(∆it)

∂∆it1

=

∫
qc
it(bi1)(1− qc

it(bi1))
µc

it(bi2)

1− (1 + νµc
it(bi2))

−ν−1 f(bi)dbi,

∂h4(∆it)

∂∆it2

=

∫
qc
it(bi1)

µc
it(bi2)

1− (1 + νµc
it(bi2))

−ν−1

{
1− µc

it(bi2) (1 + νµc
it(bi2))

−ν−1−1

1− (1 + νµc
it(bi2))

−ν−1

}
f(bi2)dbi2.

Detailed Calculations of Quasi-Newton

Let ψ = (γ, β, s, ν). Then the contribution of subject i to the log likelihood is given by

log L(ψ; yi) = log

∫
L(ψ, zi; yi)φ(zi)dzi,

where

L(ψ, zi; yi) = exp

[
ni∑

t=1

(1− I(yit1=0)) (∆it1 + s11zi1)−
ni∑

t=1

log
(
1 + e∆it1+s11zi1

)

+

ni∑
t=1

(1− I(yit1=0))

{
yit−1∑

l=0

log(1 + νl) + yit log µc
it(bi2)−

(
yit + ν−1

)
log (1 + νµc

it(bi2))

− log(yit!)− log
(
1− (1 + νµc

it(bi2))
−ν−1

)}]
.
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The forms of the derivatives for Quasi-Newton algorithm are

∂ log L

∂γ
=

N∑

i=1

L(ψ; yi)
−1

∫
L(ψ, zi; yi)

[
ni∑

t=1

(uit − qc
it(zi))

∂∆it1

∂γ
+

ni∑

t=1

uit

{
yit −

µc
it(zi)

1− (1 + νµc
it(z))

−ν−1

}
1

1 + νµc
it(zi)

∂∆it2

∂γ

]
φ(zi)dzi,

∂ log L

∂β
=

N∑

i=1

L(ψ; yi)
−1

∫
L(ψ, zi; yi)

ni∑

t=1

uit


yit2 −

µc
it(zi)

1− (
1 + νµc

it(zi)
)−ν−1


 1

1 + νµc
it(zi)

∂∆it2

∂β
φ(zi)dzi,

∂ log L

∂s11
=

N∑

i=1

L(ψ; yi)
−1

∫
L(θ, zi; yi)

{
ni∑

t=1

(uit − qc
it(zi))

(
∂∆it1

∂s11
+ zi1

)

+

ni∑

t=1

uit


yit −

µc
it(zi)

1− (
1 + νµc

it(zi)
)−ν−1


 1

1 + νµc
it(zi)

∂∆it2

∂s11



 φ(zi)dzi,

∂ log L

∂s21
=

N∑

i=1

L(ψ; yi)
−1

∫
L(ψ, zi; yi)

ni∑

t=1

uit


yit −

µc
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 1

1 + νµc
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(
∂∆it2
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)
φ(zi)dzi,

∂ log L
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=

N∑

i=1

L(ψ; yi)
−1

∫
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ni∑

t=1

uit


yit −

µc
it(zi)

1− (
1 + νµc

it(zi)
)−ν−1


 1

1 + νµc
it(zi)

(
∂∆it2

∂s22
+ zi1

)
φ(zi)dzi,

∂ log L

∂ν
=

N∑

i=1

L(ψ; yi)
−1

∫
L(ψ, zi; yi)

ni∑

t=1

uit


−

yit−1∑

l=0

1

ν(1 + νl)
+ (yit − µc

it(zi))
1

ν(1 + νµc
it(zi))

+ (yit − µc
it(zi))

∂∆it2
∂ν

1 + νµc
it(zi)

+
1

ν2
log (1 + νµc

it(zi)) +
1

1− (
1 + νµc

it(zi)
)−ν−1

{
ν−2 (1 + νµc

it(zi))
−ν−1

log (1 + νµc
it(zi))
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−ν−1−1

(
ν−1µc
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it(zi)

∂∆it2

∂ν

)}]
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where uit = 1 if yit > 0; = 0 if yit = 0.
To make the derivatives simpler, (8) and (9) can be reexpressed as

qM
it =

∫
qc
it(s11zi1)φ(zi1)dzi1, (22)

qM
it

µM
it

1−
(

1
1+νµM

it

)ν−1 =

∫
qc
it(s11zi1)

µc
it(s

T
2 zi)

1−
(

1
1+νµc

it(s
T
2 zi)

)ν−1 φ(zi)dzi, (23)

where zi is a random variable with the standard normal distribution, and φ(·)s in (22)
and (23) are the univariate and bivariate standard normal density functions, respectively.
Note that the integral in (22) and (23) are respectively one and two dimensional. To
compute the score vector and information matrix, we also need derivatives of ∆it1 with
respect to γ and s11, and ∆it2 with respect to γ, β, ν, s11, s21, and s22. The derivatives
of ∆it1 are calculated in (19) and (20) by replacing pc

it(·) and pM
it with qc

it(·) and qM
it . The



18 Keunbaik Lee et al.

derivatives of ∆it2 can be obtained from the relationship (23)

∂∆it2

∂β
=

qM
it τM

it

(
1− τM

it

{
1 + νµM

it

}−ν−1−1
)

xit∫
qc
it(s11zi1)τ c

it(s
T
2 zi) {1− τ c

it(s
T
2 zi) (1 + νµc

it(s
T
2 zi))}φ(zi)dzi

,

∂∆it2

∂γ
=

∂qM
it

∂γ
τM
it − ∂∆it1

∂γ

∫
qc
it(s11zi1) (1− qc

it(s11zi1)) τ c
it(s

T
2 zi)φ(zi)dzi

∫
qc
it(s11zi1)τ c

it(s
T
2 zi)

{
1− τ c

it(s
T
2 zi) (1 + νµc

it(s
T
2 zi))

−ν−1−1
}

φ(zi)dzi

,

∂∆it2

∂ν
=

A−B∫
qc
it(s11zi1)τ c

it(s
T
2 zi) {1− τ c

it(s
T
2 zi) (1 + νµc

it(s
T
2 zi))}φ(zi)dzi

,

∂∆it2

∂s11

= −
∫

qc
it(s11zi1) (1− qc

it(s11zi1))
(
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∂s11
+ zi1

)
τ c
it(s

T
2 zi)φ(zi)dzi

∫
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{
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T
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,

∂∆it2

∂s21

= −
∫

qc
it(s11zi1)τ

c
it(s

T
2 zi)

{
1− τ c

it(s
T
2 zi)

(
1 + νµc

it(s
T
2 zi)

)−ν−1−1
}

zi1φ(zi)dzi

∫
qc
it(s11zi1)τ c

it(s
T
2 zi)

{
1− νc

it(s
T
2 zi) (1 + νµc

it(s
T
2 zi))

−ν−1−1
}

φ(zi)dzi

,
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c
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T
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.

where

τM
it =

µM
it

1− (1 + νµM
it )

−ν−1 ,

τ c
it(s

T
2 zi) =

µc
it(s
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2 zi)
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T
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A = qM
it τM
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