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Abstract

The hydrogeological conditions of groundwater can be examined by carefully

studying the patterns of fluctuations in groundwater levels. These fluctuations are

spatially and temporally influenced by many complicated factors, including rainfall,

topography, land use, and hydraulic properties of soils and bedrock (i.e., aquifers).

In this paper, we develop methodology based on a Bayesian logistic mixture model

to simultaneously 1) cluster profiles of groundwater level changes over time and 2)

estimate the relationship between the characteristics of each cluster and environ-

mental variables. We apply the methodology to analyze groundwater level profiles

from 37 monitoring wells in Seoul, South Korea, and we find four clusters of wells.

Using the estimated relationship between the clusters and the environmental vari-

ables, we discern the hydrogeologic conditions of each cluster. Thus, we gain a

better understanding of the recharge and subsurface flow of bedrock groundwater

in an urban setting and the vulnerability of groundwater to the inflow of potential

pollutants from ground surface.

Key Words: Model-based clustering; Clustering of time course data; Hydrogeology.
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1 INTRODUCTION

Many environmental studies have emphasized the crucial importance of groundwater for

a secure water supply in urban areas (Yang et al. 1999; Park et al. 2005). However, the

hydrogeological condition and quality of urban groundwater have been significantly altered

in many countries by over-usage (e.g., over-pumping), decreased surface permeability

due to paving and construction of subsurface facilities such as underground spaces and

subways, inflow of surface pollutants, and leakage of water pipelines and sewage water.

(Barrett et al. 1999; Yang et al. 1999; Park et al. 2005; Chae et al. 2008). To sustainably

manage and utilize urban groundwater resources, a solid understanding is required of their

hydrologic cycles, which consist of recharge from (infiltration of) rainwater and snowmelt,

subsurface flow, and discharge into streams, lakes, and oceans (Lerner 2002).

A simplified conceptual model on the hydrologic cycle of urban groundwater is depicted

in Figure 1. Potentially carrying diverse contaminants from the urban ground surface,

the precipitated water infiltrates (i.e., moves down almost vertically with relatively little

lateral movement) from the ground surface to the water table (i.e., the upper boundary

of the water-saturated zone) through pores in soil or fracture networks in bedrock. Then,

this infiltrated water flows along highly fractured bedrock zones, getting mixed in with

infiltrated water from other locations. Once this groundwater reaches a monitoring well,

the groundwater level rises around this well. The arrival of groundwater signals the entry

of potential contaminants. As the groundwater flows away from the well to discharge

zones (e.g., streams, lakes, and rivers), the groundwater level falls back down.

[Figure 1 about here.]

This fluctuation of groundwater level varies depending on natural factors (e.g., rainfall

and hydraulic properties of aquifers) and anthropogenic factors (e.g., land use, artificial
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surface impermeability, over-pumping, and the like). Therefore, careful examination of

the relationship may yield valuable information on the recharge characteristics and hy-

draulic properties of aquifers, and the vulnerability of groundwater to surface pollution.

Groundwater level data have been analyzed by environmental scientists using spectral

analysis (Larocque et al. 1998), the transfer function model (Lee and Lee 2000), principle

component analysis (Moon et al. 2004), and a number of other methods. However, due

to the complexity of the fluctuation patterns and of the environmental factors in urban

areas, these methods have met with limited success.

In this paper, we propose a novel Bayesian logistic mixture model that simultaneously

clusters temporal groundwater level profiles and examines the relationship between these

clusters and environmental (geological and geographical) conditions. Analysis results

can be easily interpreted and help environmental scientists and policy makers better

understand recharge and subsurface flow of bedrock groundwater in the urban setting

and identify locations with potentially high vulnerability to contaminants from the ground

surface.

We apply the proposed methodology to analyze bedrock groundwater level data from

Seoul, the capital city of South Korea. Seoul is one of the largest and most densely pop-

ulated cities in the world, where approximately 10 million people reside in an area of 605

km2 (≈ 17000 people/km2). As in many other major cities around the world (Yang et al.

1999; Zilberbrand et al. 2001; Vazquez-Sune et al. 2005), Seoul struggles with qualitative

and quantitative maintenance of groundwater. Weekly averages of groundwater levels

(unit:cm) were recorded at 37 monitoring wells in Seoul for 36 weeks (from March 1 to

November 7, snow-free season) in 2001. This accounts for 37 temporal groundwater level

profiles each with 36 observation times; see Figure 2. In addition, four environmental

variables, discussed in Section 5.1.3, were measured on each of the wells. Wells-in-use
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have not been considered in this study, to exclude the pumping effect on groundwater

level change. Considered wells are designed to prohibit direct inflow of surface contami-

nants. These wells were drilled down to the fractured bedrock aquifer, with the average

depth of about 35 m, and are cased with concrete down to the boundary between soil (or

alluvium) and bedrock at depths of <20 m from the land surface. Within the monitored

period in 2001, a monsoon caused the major rainfalls between the 16th and the 24th

weeks (gray-shaded vertical band in Figure 2), with the peak time occurring at the 20th

week (thick black vertical line in Figure 2).

[Figure 2 about here.]

The plan of the paper is as follows. In Section 2, we review clustering methods based

on mixture models and provide more motivation for clustering groundwater profiles. In

Section 3, we describe the proposed clustering methodology in detail. Section 4 explains

how to calculate the Deviance Information Criterion (DIC) to select the number of clusters

for our model. We analyze the Seoul groundwater level data in Section 5. Additionally,

we provide the hydrogeological background that enables us to interpret the results of our

analysis, including information on the time lag between rainfall and a rise of groundwa-

ter level, the recharge mechanisms, and associated environmental variables. Section 6

concludes with a brief discussion.
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2 MODELING BACKGROUND

2.1 Previous Use of the Mixture Model

Mixture models form the basis for the most common model-based clustering methods.

The mixture model is

f(Yi) =
K∑

k=1

pkfk(Yi), (1)

where fk(Yi) is the probability density function of cluster k, Yi is a response variable of

object i, i = 1, . . . , n, pks are the mixing probabilities, and
∑K

k=1 pk = 1. In the mixture

model, the cluster membership of object i is determined by the posterior membership

probability:

Prob[object i belongs to cluster k|Y1, . . . , Yn] =
pkfk(Yi)∑
k′ pk′fk′(Yi)

.

Compared to such model-free clustering methods as hierarchical clustering and k-

means algorithm, the mixture model has two important advantages. First, the mixture

model simultaneously provides the cluster membership probability of an object and es-

timates the distribution of each cluster, whereas model-free methods only provide the

cluster membership with group labels and cannot offer detailed information on character-

istics of clusters without additional data exploration. Second, methods based on mixture

models can be easily customized to meet various research goals because they are model-

based. A mixture of multivariate normals is commonly applied to cluster objects based on

multivariate responses (Basford and McLachlan 1985). To cluster data points based on

their different linear trends in each group, Turner (2000) studied the mixture of univariate
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regressions, in which fk(Yi) = fk(Yi|xi) is the normal linear model with predictor xi. Also,

recent research has focused on clustering temporal profiles using mixture models (James

and Sugar 2003; Luan and Li 2003; Ma et al. 2006).

Although the mixing probabilities are assumed to be constant parameters in all of

the above mixture model references, these probabilities will vary with object-specific pre-

dictors (Wi) in many practical scenarios. To accommodate this, several researchers have

applied mixture models with a logistic regression structure for the mixing probabilities

(pk(Wi) instead of pk). Thus, the posterior cluster membership probability of each ob-

ject also depends on Wi. This type of model is called the mixtures-of-experts (Peng,

Jacobs, and Tanner 1996; Jiang and Tanner 1999) or the logistic mixture model (Jef-

fries and Pfeiffer 2000; Wong and Li 2001; Pfeiffer et al. 2007; Joo et al. 2007). Peng

et al. (1996) studied the logistic mixture of exponential family regression models for a

speech recognition problem. Jiang and Tanner (1999) discussed theoretical aspects of this

model. Jeffries and Pfeiffer (2000) and Pfeiffer et al. (2007) studied the logistic mixture

of univariate log normal distributions and multivariate normal distributions. Wong and

Li (2001) proposed the logistic mixture of autoregressive regression models. Joo et al.

(2007) applied the logistic mixture of multivariate regressions to environmental pollution

problems. To distinguish models with pk(Wi) and pk, the model with a constant mixing

probability pk will be called the plain mixture model.

For the purpose of analyzing our groundwater level data, we improve previous cluster-

ing methods for time course data (such as those proposed by James and Sugar 2003, Luan

and Li 2003, and Ma et al. 2006) by incorporating logistic mixing probabilities, instead of

constant parameters; thus our model can explain the relationship between cluster-specific

groundwater level fluctuation patterns and environmental conditions.
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2.2 Other Approaches for Groundwater Level Profiles

Let Ýit be the groundwater level (unit:cm) in well i at time t, where i = 1, . . . , n, and

t = 1, . . . , T . Here, Ýi = (Ýi1, . . . , Ýit, . . . , ÝiT )T constructs the profile of well i with T time

points. Let Wi be a vector of well-specific environmental variables. To find the relationship

between temporal changes in groundwater level and environmental conditions, one might

consider the following approaches. As a naive approach, one may use a semi-parametric

additive model

Ýit = s(t) + g(Wi) + έit, (2)

where s(t) is a smooth function of t, g(Wi) is a parametric function of environmental

variables, and έit is an independent normal error term with mean zero and variance σ́2.

In the naive model (2), s(t) explains the common pattern of all profiles and g(Wi) adjusts

the intercepts of groundwater profiles with the environmental variable Wi. However,

environmental conditions affect the shape of profiles as well as intercepts (See Section 5.1

for detailed hydrological reasonings). As another alternative, one might use a non-additive

model with a smooth mean function of t and Wi to explain the changes of profile shapes

with environmental conditions:

Ýit = h(t,Wi) + έit, (3)

where h(t,Wi) is a non-additive function with smooth functions and interaction terms

between spline bases of t and Wi (Ruppert et al. 2003). Unfortunately, this model

is difficult to use when n is relatively small compared to the number of knots in the

smooth function, because h(t,Wi) has a very large number of interaction terms even

when Wi contains only three or four environmental variables. Detailed discussions of
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non-additive model (3) are given in Ma and Zhong (2008). Many studies found that

patterns of groundwater level profiles tend to cluster (Larocque et al. 1998; Lee and Lee

2000; Moon et al. 2004). Thus, one might consider the following two-step analysis: 1)

cluster the patterns of centered groundwater level profiles Yi = (Yi1, . . . , Yit, . . . , YiT )T ,

where Yit = Ýit −
∑

t′ Ýit′/T , and 2) characterize each cluster based on environmental

predictors related to infiltration and flow of the groundwater. Note that all monitoring

wells have different average (or baseline) groundwater levels, which are strongly related

to the altitude of the ground surface around the well (correlation = 0.96 in our data set).

Therefore, groundwater levels need to be centered for a proper cluster analysis based

on patterns of groundwater level profiles. This two-step analysis is logically simple and

is easy to implement using a relatively small number of parameters. However, because

the two steps are separated, it has disadvantages. First, the environmental factors are

not reflected in determining clusters, even though their important relationships are well-

known (Fetter 2000). Second, the uncertainty in the clustering analysis is not reflected

in the second step. Our Bayesian logistic mixture model overcomes these disadvantages

because it accomplishes the two objectives simultaneously.

3 OUR MODEL

Graphical visualization in Figure 2 showed that the profiles cannot readily be modeled

with common parametric approaches, and furthermore that they are not periodic. We thus

decided to use penalized splines to represent cluster-specific profile patterns as smooth

semiparametric curves measured with error.

Recall that centered groundwater level profile i is denoted Yi = (Yi1, . . . , Yit, . . . , YiT )T .

For the Seoul groundwater level data, i = 1, . . . , 37 and t = 1, . . . , 36. To develop our
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method, we first suppose that a given profile i belongs to a given cluster k, where k ∈

{1, . . . , K}. We assume that the data in profile i reflect a smooth underlying cluster-

specific trend plus an additional measurement error:

Yit = sk(t) + εit,

where sk(t) is the smooth trend for cluster k, and εit is an independent normal mean

zero error term with variance σ2
k. To incorporate the assumption of smoothness into our

analysis, we specified a Bayesian cubic smoothing spline for the sk, as follows.

First, we selected a cubic B-spline basis with knots at inner time points t = 2, . . . , T−1

and evaluated them at the observation times t = 1, . . . , T . Let B denote the resulting

design matrix and let Bt denote the tth row. The design matrix is identical for each profile

because the observations occur at the same time points. Letting

sk(t) = Btνk, (4)

where νk is a parameter vector, we incorporate smoothness with an improper prior on νk

(Brumback et al. 2007),

p(νk) ∝ exp

(
− ηk

2σ2
k

νT
k Dνk

)
,

where ηk is a tuning parameter controlling smoothness, and D has (s, r)th entry

Dsr =

∫ T

1

B
(2)
ts B

(2)
tr dt,

where B
(2)
ts is the second derivative of the sth B-spline basis function evaluated at t, and

(1, T ) is the support of the B-spline basis. The prior p(νk) is constructed so that the
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posterior mean of sk(t) will be a cubic smoothing spline.

An equivalent form of the model uses a spectral decomposition for D; denote it by

QΨQT , where Q = (Q1, Q2) is an orthonormal matrix with the two columns in Q1 cor-

responding to the zero eigenvalues of D and the columns of Q2 representing the other

eigenvalues in decreasing order. Ψ is the diagonal matrix of eigenvalues, which we set

equal to the direct sum of Ψ1 with all entries equal to zero and Ψ2 with the nonzero

eigenvalues on its diagonal. Using this decomposition, we can rewrite (4) as a mixed

model:

sk(t) = Xtβk + ZtUk,

where Xtβk = BtQ1β
T
k , Zt = BtQ2Ψ

−1/2
2 , Uk is multivariate normal with mean zero and

variance λ2
kIT−2, IT−2 is the T−2 by T−2 identity matrix, and p(βk) = 1. It can be shown

that a choice of Xt = (1, t) is possible because BQ1 spans the affine functions. Denote

X = (XT
1 , . . . , XT

t , . . . , XT
T )T , Zt = (Zt1, . . . , Zt T−2), and Z = (ZT

1 , . . . , ZT
t , . . . , ZT

T )T . In

this paper, we use a proper normal flat prior for p(βk) for easier implementation.

Next, we explain the logistic mixture structure, which allows the mixing probability

pi in (1) to change with object-specific (well-specific) predictors. Let W be the n by q +1

design matrix in the logistic regression, which includes the intercept and q predictors,

αk = (αk0, . . . , αkl, . . . , αkq)
T be the vector of corresponding parameters for cluster k, and

α = (α1, . . . , αK). Also, let Wi be the ith row of W , and θ = (βT , αT , σ2, λ2)T be a set of

all parameters. Then, the likelihood function corresponding to our model is

f(Y |θ, U) =
n∏

i=1

K∑
k=1

[
pk(Wi, α)

T∏
t=1

φ(Yit|Xtβk + ZtUkt, σ
2
k)

]
, (5)

where φ(·) is the normal probability density function, U = (U1, . . . , UK)T , Uk = (Uk1, . . . , Uk T−2),
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Ukt ∼ N(0, λ2
k), and

pk(Wi, α) =
exp(Wiαk)∑K

k′=1 exp(Wiαk′)
.

We set α1 equal to a column vector of q + 1 zeros because of the identification problem.

Note that, because the profiles are the objects to be clustered in our model, the likelihood

function
∏T

t=1 φ(Yit|Xtβk + ZtUkt, σ
2
k) replaces fk(Yi) in (1).

For each regression parameter in vector βk and αk, a flat normal prior, N(0, τ 2), is

used with a large variance τ 2 (= 107). For each variance parameter, σ2
k and λ2

k, the inverse

gamma prior, IG(a, b), is used with small a (= 0.01) and b (= 0.01). Then, our model (5) is

estimated using WinBUGS (http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml).

We also provided full conditional posterior distributions in Appendix A.

4 SELECTION OF THE NUMBER OF CLUSTERS

USING THE DIC

We use the Deviance Information Criterion (DIC) (Spiegelhalter et al. 2002) to determine

the number of clusters. Define D(θ) = −2 log l(θ|Y ), θ̄ = E(θ|Y ), and D̄(θ) = E[D(θ)|Y ],

where l(θ|Y ) is the observed data likelihood. The DIC is formally defined as 2D̄(θ)−D(θ̄).

The lowest DIC value indicates the most preferred model.

Celeux et al. (2006) compared different forms of DICs for the mixtures model and

suggested that DIC3 and DIC4 were the most reliable of the DICs for the mixture

models. The DIC3 is based on the observed data likelihood, l(θ|Y ), and the DIC4

is based on the complete data likelihood, l(θ|Y, u, d), where u is random effect, d =
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(d11, . . . , d1K , . . . , dn1, . . . , dnK), and

dik =

 1, if object i belongs to cluster k;

0, otherwise,

Then DIC3 and DIC4 are given by

DIC3 = −4Eθ[log l(θ|Y )|Y ] + 2 log f̂(Y )

and

DIC4 = −4Eθ,u,d[log l(θ|Y, u, d)|Y ] + 2Eu,d[log l(Eθ(θ|Y, u, d)|Y )|Y ],

where

f̂(Y ) = Eθ [f(Y |θ)|Y ] .

In this paper, we use DIC4 as the model selection criterion because DIC3 requires mar-

ginalized likelihood functions that are not available in a closed form for our proposed

model. However DIC4 is easily calculated. The first and second terms of DIC4 for our

proposed model are, respectively, approximated by MCMC algorithms as

Eθ,u,d[log l(θ|Y, u, d)|Y ]

≈ 1

R

N∑
i=1

K∑
k=1

R∑
l=1

P (dik = 1|θ(l), U (l), Y )

×

{
log pk(Wi, α

(l)) +
T∑

t=1

log φ(Yit|Xtβ
(l)
k + ZtU

(l)
k , σ2

k
(l)

) + log φ(U
(l)
k |0, λ2

k
(l)

)

}
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and

Eu,d[log l(Eθ(θ|Y, u, d)|Y )|Y ]

≈ 1

R

N∑
i=1

K∑
k=1

R∑
l=1

P (dik = 1|θ̂, U (l), Y )

×

{
log pk(Wi, α̂) +

T∑
t=1

log φ(Yit|Xiβ̂k + ZtU
(l)
k , σ̂2

k) + log φ(U
(l)
k |0, λ̂2

k)

}
,

where R is the number of iterations, θ(l) = (β(l)T , α(l)T , σ2(l)
, λ2(l)

)T and U (l) are the

simulated values at the lth MCMC iteration,

P (dik = 1|θ, U, Y ) =
pk(Wi, α)φ(Uk|0, λ2

k)
∏T

t=1 φ(Yit|Xiβk + ZtUk, σ
2
k)∑K

k′=1 pk′(Wi, α)φ(Uk′|0, λk′
2)
∏T

t=1 φ(Yit|Xiβk′ + ZtUk′ , σ2
k′)

,

θ̂ = (β̂T , α̂T , σ̂2, λ̂2)T , and (β̂T , α̂T , σ̂2, λ̂2) = Eθ(β
T , αT , σ2, λ2|Y, u, d).

5 APPLICATION

In this section, we provide more details on the necessary hydrological background in order

to present and interpret the results of our data analysis.

5.1 Hydrogeological Background

5.1.1 Time Lag

Time lag between rainfall and a rise of groundwater level can be roughly estimated by

comparing the time of peak rainfall and the time when groundwater level is the highest

(Larocque et al. 1998). Because of unknown geological and hydrogeological features below

the ground surface, the impact and time lag of rainfall is highly variable and thus is difficult
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to estimate accurately. The time lag varies from a few hours to several months depending

on environmental conditions such as the hydrogeological characteristics of aquifers and

ground conditions. We may deduce vulnerability of groundwater to contaminants on the

ground surface using the length of time lag. If homogeneous hydraulic conductivities

can be assumed in the study area, we can also deduce the locality of infiltrated water.

A short time lag indicates that the groundwater level of a monitoring well is raised by

infiltrated water from neighboring ground surface or rapid flow through fractured zones

with little dispersion or both. Particularly, the fracture flow may facilitate rapid and

relatively long-range underground movement of contaminants.

5.1.2 Groundwater Recharge Mechanism and Subsurface Flow

Rainwater infiltrates almost vertically to the groundwater system. Then, the infiltrated

water flows laterally following the hydraulic gradient (i.e., change in groundwater levels

over a unit distance). This lateral flow is often categorized into two types, local and

regional, based on the relative distance between the point where rainwater infiltrates and

the location of the monitoring well (Fetter 2000). The local flow is defined as lateral

groundwater flow that is initiated by infiltration from the ground surface relatively close

to the monitoring well, while the regional flow is initiated by infiltration from the ground

surface relatively far from the well.

Generally, a watershed has multiple channels of local and regional flows. At locations

that are not close to major discharge zones (i.e., major rivers or oceans), local or regional

flow often has its own path to a discharge zone without being mixed with others. When

a well is located on that path, the groundwater profile will have a distinctive fluctuation

pattern reflecting that flow. However, at locations that are close to major discharge zones,

multiple local and regional flows usually get mixed with each other (Fetter 2000).
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If infiltration occurs close to the monitoring well, most of the infiltrated water will

flow laterally to the well, while some will disperse. Thus, the groundwater level will rise

effectively with only a short time lag. If the infiltrated water travels a long distance to

the monitoring well, most of it disperses and gets mixed with infiltrated water from other

ground surface sources. Thus the immediate effect of rainfall will be sluggish and have

a long time lag. In regional flow, groundwater level profiles can be even flat because the

effect of rainfall is negligible and the time lag is long (sometimes longer than a year).

Compared to other areas, the time lag is generally shorter in Seoul area, which is covered

with relatively thin (less than 20m) soil zones over crystalline bedrock.

5.1.3 Environmental Variables

Precipitation is one of the most important factors that influence groundwater level. Al-

though the study area is a large metropolitan city, no spatial heterogeneity of precipitation

was considered in our study; hence, precipitation was considered as an insignificant factor

in clustering groundwater level fluctuation patterns. Instead, relationships between pat-

tern in each cluster and precipitation were used for the interpretation of analysis results in

Section 5.2. In this study, most wells are not located close to major natural and artificial

underground structures, such as major faults, tunnels and subways. Also, they are far

from the western coastal area. If wells were significantly affected by major underground

structures or tides or storage-discharge, distinctive patterns (such as sudden drop or in-

crease of groundwater level) of these effects must appear in the groundwater level profiles.

But, we could not observe these patterns in our data.

As potentially important environmental (well-specific) predictors (Wi) that may affect

groundwater level profiles, we consider four environmental variables: hydraulic head, soil

depth, percentage of permeable ground surface, and distance to river. These data are
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provided in Appendix B. The percentage of permeable ground surface was used as an

indicator of runoff because infiltration (and runoff) is generally controlled by permeability

of land surface. Hydraulic head, soil depth, and distance to river were used to explain the

natural groundwater discharge mechanism. The four predictors are illustrated in Figure

3. Their detailed definitions and expected effects are as follows:

[Figure 3 about here.]

1) Hydraulic head is the annual average distance between groundwater level and sea

level, while groundwater level is often defined as a relative measurement. If a sea level

of zero is used in defining groundwater level, this groundwater level is the same as the

hydraulic head. Because the interest of this paper is the change of groundwater level rather

than hydraulic head, we constructed a clustering model for the centered groundwater

level profiles. However, the shapes of the profiles may have meaningful relationships with

hydraulic head. In mountain areas, hydraulic head is high and changes following the

dramatic changes of topography; the higher the hydraulic head, generally the higher the

hydraulic gradient. Because this high hydraulic gradient makes lateral groundwater flow

fast (Bockgard 2004), we may often observe the effective rise of groundwater level after a

rainy season at locations where hydraulic head is high. In basin areas, hydraulic gradient

is usually low. Thus groundwater flow is slow and the effect of groundwater is sluggish.

Hydraulic head is one of the most important factors that determine the effect of flow.

2) Soil depth is the thickness of the unconsolidated soil zone immediately below the

ground surface. In general, if the soil zone is shallow, rainwater can infiltrate easily to

the water table resulting in a rapid increase of groundwater level (Rodhe and Bockgard

2006).

3) Percentage of permeable ground surface is measured within a circle with 250m

radius from a well. A low percentage of permeable ground surface increases surface runoff
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of rainwater and reduces the infiltration and recharge of rainwater. For example, only a

small amount of rainwater can infiltrate in densely paved areas.

4) Distance to river is the distance between a monitoring well and the main discharge

zone of groundwater, which is the Han River in Seoul area. As explained in Section

5.1.2, a mixture of multiple local and regional flows will affect the groundwater level at

locations close to the Han River, while profiles tend to take the distinctive pattern of

either local or regional flow at locations not close to river (i.e., close to mountainous

areas) (Fetter 2000). Alternatively, we may consider the distance to the closest stream

as an environmental variable. However, it has a couple of disadvantages. First, because

there are too many small and curvy streams, it is difficult to quantify the distance to

every small stream. Second, even when the closest stream is found, we should conduct

an additional step of quantification on the characteristics (such as size and flow rate) of

streams at the locations where groundwater is possibly discharged. These quantifications

are difficult and beyond the scope of this paper.

5.2 Results

We considered six competing models: Bayesian logistic mixture models (5) with 2, 3, 4,

and 5 clusters, the spline model without clustering (K=1 and Wi = 1 in (5)), and the

plain mixture of 4 clusters (K=4 and Wi = 1 in (5)). The DIC values for these models

were 20677.4, 20386.1, 19712.8, 19810.1, 21536.6 and 19794.4 respectively. Because the

logistic mixture of 4 clusters had the lowest DIC value, we consider it the best for this

data set among competing models. The spline model without clustering had a higher

DIC value than any other considered mixture models. This indicated that clustering was

useful in modeling groundwater level profiles. Also, the comparison between the logistic

and plain mixture of 4 clusters models indicates that the mixture model was improved by
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adding the logistic mixture structure in pk(Wi).

The likelihood of mixture models are invariant when labels of mixture components

are switched (Diebolt and Robert, 1994; Richardson and Green, 1997). Thus, the poste-

rior distributions have multimodal distributions. If components (clusters) are not well-

separated, Markov Chains in posterior simulations can migrate easily from neighborhoods

of one mode to another, switching labels. In this case, the means of the posterior distri-

butions are practically meaningless in interpreting analysis results. As a solution to this

problem, Stephens (2000) proposed to undo label switchings in Markov chains using his

relabeling algorithm. Thus, each resulting Markov chain contains random numbers for

only one of the components. This makes the resulting posterior distributions unimodal

and posterior means easily interpretable. However, if the components are well-separated,

Markov Chains may not migrate during a long period of simulations because the bound-

aries between components have very low probability densities. In our analysis, all sim-

ulated posterior distributions are unimodal (see Figure 4) and label switching was not

observed during a reasonably large number (100,000) of iterations (see simulation history

plots in Figure 5 as examples). We believe that, because the four clusters are distinctive,

as shown in Figure 6, the Markov chains remained around a mode without migrating

to neighborhoods of other modes. Therefore, we did not need to apply the relabeling

algorithm to our data.

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

[Figure 7 about here.]
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[Figure 8 about here.]

Sampling locations together with cluster memberships are presented in Figure 7. Also,

the four clusters, sorted by the amplitudes of the mean temporal profiles, are shown in

Figure 6. One can observe that Cluster 1 has the least variation over time and that Cluster

4 has the largest. Clusters 2 and 3 have similar amplitude. As described in Section 5.1,

the logistic regression component in (6) is constructed with four environmental predictors:

hydraulic head, soil depth, percentage of permeable ground surface, and distance to river.

In Figure 8, the four clusters are compared in terms of these predictors. Posterior distrib-

utions of corresponding parameters are illustrated in Figure 4 and summarized in Table 1.

Note that, because Cluster 1 is used as the reference in our model (5), the other clusters

are described relative to it. The slope parameters for hydraulic head have posterior means

equal to -0.05, -0.49, and -0.01 in Clusters 2, 3, and 4, respectively. Corresponding odds

ratios are 0.95, 0.61, and 0.99, respectively. For example, odds of Cluster 3 is 0.61 times

of odds of Cluster 1. Among three slope parameter estimates, only that for Cluster 3 has

a 95% credible interval (CI) that does not include zero. Thus, the values for hydraulic

head are similar among the wells in Clusters 1, 2, and 4. We can conclude that hydraulic

head is relatively low in the wells of Cluster 3 and relatively high in the wells of Clusters

1, 2, and 4. Figure 8 also shows that wells in Cluster 3 have the lowest mean of hydraulic

head and those in Cluster 1, 2, and 4 have similar means of hydraulic head. Similarly, we

can conclude that Clusters 3 and 4 have wells with shallower soil zones and that Clusters

1 and 2 have wells with deeper soil zones. We found from Table 1 that the percentage

of permeable ground surface within 250 m radius does not distinguish the clusters in our

data. Considering that Korean government regulation requires 500 m radius around a

residential well to be carefully protected, we also examined the same models using 500

m and 1000 m radius. Permeability was not significant in all cases. It is likely that the
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surface permeability is not a significant factor because elevation of groundwater level in

Seoul area is mainly affected by subsurface flow with more than a week of time lag, rather

than by immediate infiltration with one or two days of time lag. Finally, we found that

wells in Cluster 2 are located relatively far from the Han River, wells in Cluster 3 are

close, and wells in Cluster 1 and 4 have medium distances.

[Table 1 about here.]

[Table 2 about here.]

Fractured crystalline bedrocks in Seoul consist of granites, gneisses and schist and they

generally have the low and narrow-ranging hydraulic conductivity values from 2.3× 10−5

to 7.4 × 10−3 cm/sec (SMG, 1996). In interpreting data analysis results, we will assume

hydraulic conductivity is moderately homogeneous in Seoul area and discuss the rela-

tionships between groundwater level profiles and origins of groundwater flow (regional or

local flow). The relationships between clusters (Figure 6) and environmental characteris-

tics (Table 1) can be interpreted as follows; for a summary refer to Table 2.

1) The profiles in Cluster 1 have a distinctively small or negligible degree of fluctuation.

If homogeneous hydraulic conductivities are assumed in the study area, only regional flow

can cause this distinctively flat pattern regardless of environmental conditions. Thus, we

can expect that these wells are located on a path of regional flow. If hydraulic conductiv-

ities are distinctively low or unsaturated zone is distinctively thick around the monitoring

wells in Cluster 1, even local flows may cause the flat pattern of groundwater level profiles.

In both cases, infiltrated water approaches to the wells very slowly.

2) In Cluster 2, groundwater levels increase during the rainfall season and gradually

decrease afterward, which is typically expected under natural conditions. In our data, the

heavy rainfall season was between the 16th and the 24th weeks and the peak time was
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around the 20th week. Peak groundwater level appears around the 23rd week. Therefore,

we may characterize the fluctuation pattern of Cluster 2 as having a medium amplitude

of fluctuation and a relatively short lag time between rainfall and a rise in groundwater

level. Because the time lag is short, local flow seems dominant in Cluster 2. Table 1 shows

that, for Cluster 2, hydraulic head is high, soil zone is deep, and the wells are located

far from the Han River. Because these wells are not located closely to the river, we may

expect a distinctive pattern of local flow. When homogeneous hydraulic conductivity

is assumed, high hydraulic head can be another reason why the local flow can cause an

effective response of the groundwater level rise. However, a deep soil zone seems to prevent

the amplitudes of profiles in Cluster 2 from being as large as those in Cluster 4.

3) Groundwater levels in Cluster 3 increase slowly until the 26th week and decrease

slowly afterward; thus the time lag of the rainfall effect in Cluster 3 is much longer than

the lag in Clusters 2 and 4. In an area with homogeneous hydraulic conductivities, such

a long time lag cannot be explained with local flow, which starts with infiltrated water

from the ground surface adjacent to the monitoring well. We found that wells in Cluster

3 have a low hydraulic head and shallow soil zone, and are very close to the Han River;

see Figure 7. Assuming homogeneous hydraulic conductivities, the slow increase and

decrease of groundwater level can be explained as follows. First, because hydraulic head

is low around wells in Cluster 3, groundwater flow will be slow. Thus, as compared to

Cluster 2, the effect of local flow will be slower and weaker in Cluster 3. Second, because

wells in Cluster 3 are located close to a major river, multiple local and regional flows mix

with each other around these wells (Fetter 2000). If groundwater infiltrates at locations

relatively close to a monitoring well, it will reach the well within a short time. However,

if groundwater infiltrates at locations relatively far from the well, it will take longer to

reach the well. Therefore, multiple groundwater flows will arrive at the monitoring well
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with different time lags and generate a pattern of slow increase and slow decrease.

4) Profiles in Clusters 2 and 4 have similar fluctuation patterns, except for the larger

amplitude of profiles in Cluster 4. Table 1 shows that wells in Cluster 4 appear to be

subject to similar environmental conditions as those in Cluster 2, except for a shallow soil

zone. The larger amplitude of profiles (stronger effect of local flow) in Cluster 4 can be

explained by shallow soil depth, because this causes faster and more abundant infiltration

to the water table.

Unless wells are located in groundwater recharge zone (i.e., high mountain area), the

groundwater level tends to be affected by regional subsurface flow, which is recharged in

high elevation areas, as well as local infiltration around monitoring wells. The significant

change of groundwater level may be observed as a daily, weekly, or monthly base after a

major rainfall event, depending on the hydrogeologic characteristics of aquifer. Because

we used weekly average values for precipitation amount, our approach cannot explain

daily variations. However, if rainfall elevates groundwater level in a day or two, these

elevations will increase the average groundwater level of the first week. If this elevation is

large enough, our method will detect the increase of groundwater level in the first week.

After examining the rainfall peak time and the peak of groundwater levels (Larocque et

al., 1998) in Figure 6, we can find that most groundwater levels are affected by rainfall

after more than a week.

6 CONCLUDING REMARKS

A Bayesian logistic mixture model was proposed to cluster groundwater level profiles

and simultaneously discover relationships between clusters and environmental conditions

around wells. We demonstrated that our model can explain these relationships adequately
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using a manageable number of parameters, which is a strength relative to the alternative

models: additive model (2) and non-additive model (3).

Successful application of our model helps us to better understand the pattern of

groundwater level change with respect to the characteristics of recharge and subsurface

flow. A short time lag between rainfall and a rise of groundwater level indicates that the

groundwater recharges very rapidly around the monitoring well and thus can be vulner-

able to the inflow of surface pollutants. Among the four clusters that we found, two of

them, Clusters 2 and 4, have short time lags, apparently, being affected by local flow.

Because profiles in Cluster 4 have large amplitudes, the groundwater is expected to be

even more responsive to rainfall episodes around the monitoring wells in Cluster 4. Wells

in Cluster 1 have a relatively stable profile pattern with very small or negligible fluctu-

ation. Therefore, we expect effects of rainfall and pollution from ground surface to be

more sluggish around these wells. Our results will be helpful in sustainably managing

the groundwater resources on a local or regional scale. Particularly, in South Korea, our

approach can be used to scientifically designate Groundwater Protection Areas (GPA) in

an administrative district reinforced by current Groundwater Laws.
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APPENDIX

APPENDIX A: FULL CONDITIONAL POSTERIOR DISTRI-

BUTIONS

From the sampling distribution and prior distributions, we have the joint distribution

given by

f(Y, U, D, β, α, σ2, λ2)

∝
N∏

i=1

K∏
k=1

[
pk(Wi, α)

T∏
t=1

φ(Yit|Xtβk + ZtUkt, σ
2
k)

]Dik

(6)

×
K∏

k=1

{
T−1∏
t=2

φ(Ukt|0, λ2
kI) · φ(βk|0, τ 2I)φ(αk|0, τ 2I)ω(σ2

k|a, b)ω(λ2
k|a, b)

}
,

where φ(·) is the normal probability density function and ω(·) is the inverse gamma

probability density function. Dik’s are unknown group membership indicator variables

(Dik = 1 if Yi belongs to group k; Dik = 0 otherwise.). For the estimation of our model,

Gibbs sampling is implemented. Let θ = (β, α, σ2, λ2) and θ−a be θ excluding a. Full
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conditionals are given by

f(βl|θ−βl
, U, D, Y ) ∝

Nl∏
j=1

T∏
t=1

φ(Yjt|Xtβl + ZtUlt, σ
2
l ) · φ(βl|0, τ 2I)

∝ φ(βl|µ(βl), Σ(βl)),

where Nl and Yjt are respectively the number of measurement and the response value

such that Dil = 1 for i = 1, · · · , N and

µ(βl) =

(
Nl

∑T
t=1 XT

t Xt

σ2
l

+
I

τ 2

)−1
1

σ2
l

Nl∑
j=1

T∑
t=1

(yjt − ZtUlt) XT
it ,

Σ(βl) =

(
Nl

∑T
t=1 XT

t Xt

σ2
l

+
I

τ 2

)
.

f(αl|θ−αl
, U, D, Y ) ∝

N∏
i=1

K∏
k=1

{pk(Wi, α)}Dik · φ(αl|0, τ 2I),

where we may use a Metropolis-Hastings algorithm to generate α.

f(σ2
l |θ−σ2

l
, U, D, Y ) ∝

Nl∏
j=1

T∏
t=1

φ(Yjt|Xtβl + ZtUlt, σ
2
l ) · ω(σ2

l |a, b)

∝ ω(σ2
l |a(σ2

l ), b(σ
2
l )),

where a(σ2
l ) = NlT

2
+ a and b(σ2

l ) = 1
2

∑Nl

j=1

∑T
t=1 (yjt −Xtβl − ZtUlt)

2 + b.

f(λ2
l |θλ2

l
, U, D, Y ) ∝

T−1∏
t=2

φ(Ukt|0, λ2
l I) · ω(λ2

l |a, b)

∝ ω(λ2
l |a(λ2

l ), b(λ
2
l )),
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where a(λ2
l ) = T

2
+ a− 1 and b(λ2

l ) =
∑T−1

t=2

U2
lt

2
+ b.

f(Dil = 1|θ, U,D−Dil
, Y ) ∝ pl(Wi, α)

T∏
t=1

φ(Yit|Xtβl + ZtUlt, σ
2
l )

∝
pl(Wi, α)

∏T
t=1 φ(Yit|Xtβl + ZtUlt, σ

2
l )∑K

k=1 pk(Wi, α)
∏T

t=1 φ(Yit|Xtβk + ZtUkt, σ2
k)

.

Thus, Di = (Di1, · · · , DiK) has a multinominal distribution (P1, · · · , PK) where Pl =

pl(Wi,α)
QT

t=1 φ(Yit|Xtβl+ZtUlt,σ
2
l )

PK
k=1 pk(Wi,α)

QT
t=1 φ(Yit|Xtβk+ZtUkt,σ

2
k)

for l = 1, · · · , K.

f(Ult|θ, U−Ult
, D, Y ) ∝

Nl∏
j=1

φ(Yjt|Xtβl + ZtUlt, σ
2
l ) · φ(Ult|0, λ2

l I)

∝ φ(Ult|µ(Ult), Σ(Ult)),

where

µ(Ult) =

(
NlZ

T
t Zt

σ2
l

+
I

λ2
l

)−1
1

σ2
l

Nl∑
j=1

(yjt−Xtβl
) ZT

t ,

Σ(Ult) =

(
NlZ

T
t Zt

σ2
l

+
I

λ2
l

)
.

In real data analysis, we used WinBugs (http : //www.mrc− bsu.cam.ac.uk

/bugs/winbugs/contents.shtml) for posterior simulations.
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APPENDIX B: ENVIRONMENTAL VARIABLES

Group ID Hydraulic Soil Percentage of Distance

Well Head Depth Permeable Ground Surface to River

1 25 23 45.16 4839

1 9 4 27.27 227

1 11 12 26.68 161

1 5 22 10.25 1953

1 32 19 22.38 182

1 12 11 0.00 447

1 4 15 43.03 124

1 28 15 6.76 1709

2 12 12 0.00 1060

2 11 20 12.17 1817

2 3 16 22.99 396

2 11 12 0.00 3392

2 5 21 37.74 212

2 5 19 0.00 693

2 13 13 4.19 4307

2 4 20 12.01 1858

2 10 12 0.17 2013

2 11 14 0.00 6227

2 54 8 43.17 5239

2 18 13 0.00 1311

2 27 11 42.19 6501

2 8 11 75.52 3365

3 8 19 28.42 386

3 5 2 13.03 1347

3 6 10 20.25 467

3 9 11 1.93 422

3 5 2 0.94 509

4 70 7 66.86 986

4 13 6 18.34 3345

4 11 13 100.00 2259

4 11 8 0.00 1086

4 61 12 63.41 3851

4 13 12 0.00 357

4 8 11 8.13 186

4 4 8 0.79 2629

4 3 25 0.00 2818

4 2 10 11.45 1774
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Figure 1: Diagram of infiltration and lateral groundwater flow in Seoul, Korea.
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Figure 2: Temporal profiles of centered groundwater levels measured in 37 groundwater
wells (unit: cm). As a reference line, the BLUP (Best Linear Unbiased Prediction) is
drawn with a thick gray line. Gray-shaded vertical band and thick black vertical line
indicate the rainy season of year 2001 and the peak time of this season, respectively.
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Figure 3: Environmental variables.
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Figure 4: Posterior density distributions of slope parameters in the logistic regression
component.

36



Figure 5: Simulations from the posterior distributions of the slope parameters for hy-
draulic head variable in the logistic regression component.

37



Figure 6: Clustered temporal profiles of centered groundwater levels (unit:cm). As refer-
ence lines, the BLUP (Best Linear Unbiased Prediction) profile for each cluster is drawn
with a thick line. The gray-shaded vertical band and the thick black vertical line indicate
the rainy season of year 2001 and the peak time of this season, respectively.
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Figure 7: Well locations with cluster memberships.
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Figure 8: Scatterplots of environmental variables and group ID. For each well, the values
of environmental variables are marked with gray circles. Means of each group are marked
with dark lines.
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Table 1: Environmental characteristics of four clusters and Bayesian estimates of slope
parameters in the logistic regression component. Posterior means and corresponding
posterior odds are reported in parentheses.

Hydraulic Soil Percentage of permeable Distance to
head depth ground surface river

Cluster 1 high deep no difference medium
Cluster 2 high(-0.05, 0.95) deep(-0.06, 0.94) no difference (0.00, 1.00) far(1.00∗∗, 2.72)
Cluster 3 low(-0.49∗∗, 0.61) shallow(-0.41∗∗, 0.66) no difference(-0.07, 0.93) close(-2.35∗, 0.10)
Cluster 4 high(-0.01, 0.99) shallow(-0.22∗, 0.80) no difference (0.00, 1.00) medium (0.45, 1.57)

* denotes parameters for which the 90 percent credible interval does not include zero.
** denotes parameters for which the 95 percent credible interval does not include zero.
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Table 2: Profile patterns and groundwater flow.

Profile pattern Cause for profile patterns
Amplitude Time lag Local flow Regional flow

Cluster 1 negligible N/A weak strong
Cluster 2 medium short strong weak
Cluster 3 medium long medium medium
Cluster 4 large short very strong weak
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