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1. Introduction

Longitudinal data arise from repeated measurements on the same study subject
periodically over time. This is different compared to the data from cross-sectional
studies where each measurement is taken only once at a single point in time for each
subject. The repeated observations for longitudinal data are typically correlated
with one another across time [3]. Although the population-averaged effects of the
covariates are usually of primary interest in the analysis of longitudinal data, the
effect of serial correlation must also be taken into account for proper inference of
the population-averaged effects of covariates in marginal models [4, 5].

Likelihoood-based marginalized models have recently been developed for the
analysis of longitudinal categorical data [1, 2, 6–11]. These models permit direct
interpretation of marginal mean parameters and characterize the serial dependence
of longitudinal outcomes by using one of the following approaches: 1) random ef-
fects (marginalized random effects model (MREM)) [1, 2, 6], 2) a Markov struc-
ture (marginalized transition model (MTM)) [7–9], or 3) both random effects and
Markov dependence [10, 11]. In this paper, we focus on the MREM and propose a
model that extends the MREM to accommodate longitudinal nominal data.

Different models have been developed or proposed for the analysis of nominal
data. Multinomial logit models were developed for the purpose of analyses of lon-
gitudinal or clustered nominal data [13–17]. A Bayesian two-level generalized logit
model was proposed by Daniels and Gatsonis [18]. Revelt and Train [19] proposed
discrete choice models with random coefficients for the explanatory variables which
can vary according to the response category. Similar models were proposed in
Hedeker [20] to describe clustered or longitudinal nominal response data. Hartzel
et al. [21] surveyed mixed-effects models for both clustered ordinal and nominal
responses. Chen et al. [22] proposed likelihood-based joint marginal and condi-
tional models for longitudinal nominal data using a Markovian structure. Lee and
Mercante [9] proposed nominal marginalized transition models using a Markovian
structure and presented consistency and robustness of estimates of marginal mean
parameters to misspecification of dependence models.

Heagerty [1] and Lee and Daniels [2] used the covariance matrix with AR(1)
structure (Σ1) to account for serial correlation of binary or ordinal responses, re-
spectively. However this structure cannot be used for longitudinal nominal data
directly because correlations among categories cannot be explained. In longitu-
dinal nominal data analysis, two types of correlations among responses must be
taken into account: correlations among categories at the same time and correla-
tions among responses on the same subject over time. To account for serial and
categorical dependence, we introduce normally distributed random effects with a
covariance matrix with a Kronecker product composition. The covariance matrix
(Σ) is specified as the Kronecker product of the covariance matrix accounting for
serial dependence (Σ1) and the correlation among categories at same time (Σ2),
that is, Σ = Σ1 ⊗ Σ2 [6, 23, 24]. A key advantage of this specification lies in
the ease of interpretation in terms of the independent contribution of two types of
correlations (categorical and serial) to the overall within subject covariance matrix.

In this paper, we propose a marginalized random effects model [1, 2] to be used
for longitudinal nominal data. The marginal model for marginal mean parameters
is same to that in Lee and Mercante [9] and the dependence of responses is mod-
eled ‘separately’ via random effects. We will also consider a Kronecker product
covariance structure for the covariance matrix of responses to analyze longitudinal
nominal data.

The paper is organized as follows. We describe the marginalized random effects
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models for longitudinal nominal data in Section 2. In Section 3, we conduct a
simulation study to examine bias and efficiency of estimation of marginal mean
parameters. Methods are illustrated by using health service data from the McKin-
ney Homeless Research Project (MHRP) study in Section 4. Finally, a conclusion
is provided in Section 5.

2. Marginalized Random Effects Models for Longitudinal Nominal Data

In this section, we describe our proposed model and the maximum likelihood
method for it.

2.1 Proposed Model

If the designed completion time is denoted by T , we will have ni ≤ T measures for
each unit. Let Y ∗

i
T = (Y ∗

i1, · · · , Y ∗
ini

) be the vector of multinominal responses with
K categories on subject i = 1, · · · , N and let Yit = (Yit1, · · · , YitK) be indicator
vectors for Y ∗

it at times t = 1, · · · , ni where Yitk = 1 if Y ∗
it = k and Yitk = 0

otherwise.
Let xT

it = (xit1, · · · , xitp) indicate covariates corresponding to yit·. In longitudinal
nominal data, two types of response correlations are considered: 1) correlations
among categories at the same time and 2) correlations due to serial dependence. We
propose a Kronecker product of structured covariance matrices, that is, Σ = Σ1 ⊗
Σ2, where Σ1 and Σ2 are, respectively, the covariance matrix for serial dependence
and the covariance matrix among categories at same time [23, 24]. The marginalized
random effects model for nominal data (NMREM) is given by

log
P (Yitk = 1|xit)
P (YitK = 1|xit)

= xT
itβk, (1)

log
P (Yitk = 1|bit, xit)
P (YitK = 1|bit, xit)

= 4itk + bitk, (2)

bi ∼ N (0, Σ) , (3)

where bT
i = (bT

i1, · · · , bT
ini

) = (bi11, · · · , bi1K−1, · · · , bini1, · · · , biniK−1) and βk is
the p × 1 vector of regression coefficients for i = 1, · · · , N ; t = 1, · · · , ni; k =
1, · · · ,K−1. Here, βT = (βT

1 , · · · , βT
K−1) is the vector of marginal mean parameters

used in making inferences about the covariates effects. The parameters 4itk in (2)
are the subject-time-category-specific intercept and function of both the marginal
mean parameters, β and the dependence parameter, Σ.

From (1)-(3), we have the following relationship, for all i, t, and k,

PM
itk =

∫
P c

itk(bit)φ(bit)dbit, (4)

where PM
itk = P (Y ∗

it = k|xit), P c
itk(bit) = P (Y ∗

it = k|bit, xit) and φ(·) is a multivariate
normal distribution with mean 0 and variance matrix Σ2. Given β and Σ2, we
calculate 4it from the relationship (4) using a Newton-Raphson algorithm. More
detailed calculations are given in the Appendix.

The model as described above accounts for the longitudinal association of re-
sponses using random effects. The fixed effects parameters have both the subject-
specific and marginal interpretations.
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Heagerty [1] and Lee and Daniels [2] proposed an autoregressive covariance ma-
trix to provide measures of random variation both across individuals and over time
for longitudinal binary and ordinal data, respectively. We assume the variance-
covariance matrix Σ = Σ1 ⊗ Σ2 of bi where Σ1 is an autoregressive covariance
structure

Σ1 =




1 e−α e−2α · · · e−(ni−1)α

e−α 1 e−α · · · e−(ni−2)α

e−2α e−α 1 · · · ...
...

...
...

. . .
...

e−(ni−1)α e−(ni−2)α e−(ni−3)α · · · 1




, (5)

and Σ2 is a unstructured covariance matrix to explain correlation of categories as
follows

Σ2 =




σ11 σ12 σ13 · · · σ1,K−1

σ12 σ22 σ23 · · · σ2,K−1

σ13 σ23 σ33 · · · ...
...

...
...

. . .
...

σ1,K−1 σ2,K−1 σ3,K−1 · · · σK−1,K−1




. (6)

Galecki [23] noted that a lack of identifiability can result with Kronecker product
covariance structure. The indeterminacy stems from the fact that Σ1 and Σ2 are
not unique since for c 6= 0, cΣ1⊗(1/c)Σ2 = Σ1⊗Σ2. However, this nonidentifiability
can be resolved using Σ1 as a correlation matrix. This same covariance structure
was used in the models for bivariate longitudinal binary data in Lee et al. [6].

The regression structure is characterized using a generalized linear model for the
marginal probabilities that incorporates random effects to account for serial depen-
dence and the correlation among categories. Also, the conditional model accounts
for the longitudinal association from α in Σ1. The marginal parameters have both
subject-specific and marginal interpretations, as is typical in linear mixed models
[3]. The advantage in the MREM approach is the ability to use conditional mean
models for association while preserving the ability to structure the marginal mean
directly, using the regression model. So, the interpretation of regression coefficients,
β, does not depend on the specification of the dependence model. For longitudinal
data analysis with random effects bi, the marginal probability captures the system-
atic variation that is due to xit, whereas parameters in cov(bi) provide a measure
of random variation of categories at the same time (Σ2) and over time (Σ2e

α|t−t′|).
Heagerty and Kurland [25] investigated the robustness of regression coefficients es-
timates to incorrect assumptions regarding the random effects in generalized linear
mixed models and MREMs. They found that the MREMs are much less suscep-
tible than generalized linear mixed models to bias resulting from random effects
model misspecification. Lee and Daniels [6, 8] also examined robustness of marginal
parameter estimates to misspecification of the dependence model.

To deal with the random effects from a computational perspective, we transform
the random effects

bi =
{

Σ
1
2
1 ⊗ Σ2

1
2

}
ai,

where ai is a ni(K − 1) × 1 vector of independent standard normals, and Σ1
1
2
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and Σ2
1
2 are lower triangular matrices with positive diagonal elements and the

Cholesky factor of the ni×ni matrix Σ1 and that of the (K − 1)× (K − 1) matrix
Σ2, respectively. Computationally, it is convenient to standardize the random ef-
fects and estimate the Cholesky elements of Σ (Hedeker and Gibbons, 1994). The
reparameterized conditional model is then given by

log
P (Yitk = 1|ai, xit)
P (YitK = 1|ai, xit)

= 4itk + s
(t)
k ai,

ai ∼ N(0, I),

where s
(t)
k is the ((t−1)(K−1)+k)th row vector of Σ

1
2 and I is the identity matrix

of order ni(K − 1). This transformation allows us to estimate the Cholesky factor
Σ

1
2 , which is a lower-triangular matrix, instead of the covariance matrix Σ. As the

Cholesky factor is the square root of the covariance matrix, this then allows more
stable estimation of near-zero variance terms [26].

2.2 Maximum Likelihood Estimation

Now the maximum likelihood method for these models is described. Since the
random effects are latent or unobserved, to obtain the likelihood function we con-
struct the usual product of multinominals that would apply if they were known
and then integrate out the random effects. This integral does not have closed form
and this necessitates the use of some approximation for the likelihood function
(e.g., marginalized likelihood function). We can then maximize the marginalized
likelihood using a variety of standard methods. There are several algorithmic ap-
proaches to integrate the random effects. Gauss-Hermite quadrature is popular
for simple models such as random intercept models [26]. To increase efficiency
of Gauss-Hermite quadrature, an adaptive version of Gauss-Hermite quadrature
[27, 28] is used. It centers the nodes with respect to the mode of the function be-
ing integrated and scales them according to the estimated curvature at the mode.
Monte Carlo (MC) methods are used for models with higher-dimensional integrals.
The MC methods use the randomly sampled nodes to approximate integrals. How-
ever, locating points at random does not guarantee an optimal distribution of the
points. That is, the points may not be distributed exactly uniformly because of the
sampling error.

An alternative to both the Gauss-Hermite and Monte Carlo methods is the
‘Quasi-Monte Carlo (QMC) method’ [29–31]. QMC works like MC but instead
of using a uniformly and randomly distributed set of points it utilizes uniformly
distributed deterministic sequences, called low discrepancy sequences [29]. The
strength of the QMC method is that the distribution of points is optimal [32].
In particular, for high dimensional correlated data, the QMC method apparently
outperforms both the Gauss-Hermite and Monte Carlo methods [32]. In our model,
we use the QMC method to evaluate the integral in (7) due to high dimensionality
of ai. The NMREM marginal likelihood function is given by,

L(θ; y) =
N∏

i=1

∫ ni∏

t=1

K∏

k=1

(P c
itk(ai))

yitk φ(ai)dai. (7)

where θ = (β, γ, α), γ is nonzero elements of Σ1/2
2 , and yitk = 1 if Y ∗

it = k and 0 oth-
erwise. We propose a Quasi-Newton algorithm to find the MLE of the parameters
of interest in the MREM.
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For estimation of the p covariate coefficients βj for j = 1, · · · ,K − 1 and (γ, α),
we need to evaluate log L(θ; y). We obtain

log L(θ; yi) = log
∫ ni∏

t=1

K∏

k=1

{P c
itk(ai)}yitk φ(ai)dai

= log
∫

exp

[
ni∑

t=1

{
K−1∑

k=1

yitk(4itk + s
(t)
k ai) + log P c

itK(ai)

}]
φ(ai)dai.

The marginal likelihood for a sample of N independent subjects is given by
L(θ; y) =

∏N
i=1 L(θ; yi). Maximizing the log-likelihood, log L, with respect to θ

yields the likelihood equation

∂ log L(θ; y)
∂θ

=
N∑

i=1

L−1(θ; yi)
∫

∂L(θ, ai; yi)
∂θ

φ(ai)dai = 0

where

L(θ, ai; yi) =
ni∏

t=1

K∏

k=1

{P c
itk(ai)}yitk (8)

= exp

[
ni∑

t=1

{
K−1∑

k=1

yitk(4itk + s
(t)
k ai) + log P c

itK(ai)

}]
.

The (K − 1)p + (K − 1)K/2 + 1-dimensional likelihood equations are given in the
Appendix.

The matrix of second derivatives of the observed data log-likelihood has a very
complicated form. One alternative is to base an approximation on the observed
information. The sample empirical covariance matrix of the individual scores in
any correctly specified model is a consistent estimator of the information matrix
and involves only the first derivatives. The Quasi-Newton method can be used to
solve the likelihood equations, using

θ(n+1) = θ(n) +
[
Ie

(
θ(n); y

)]−1 ∂ log L

∂θ(n)
,

where Ie (θ), an empirical and consistent estimator of the information matrix at
step n, is given by

Ie (θ; y) =
N∑

i=1

∂L(θ; yi)
∂θ

∂L(θ; yi)
∂θT

.

At convergence, the large-sample variance-covariance matrix of the parameter es-
timates is then obtained as the inverse of the information matrix.

For the explicit form of the Quasi-Newton algorithm and the detailed derivatives
calculations (using (4); see the Appendix).
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3. Simulations

We conducted several simulation studies to examine the bias in estimating the
marginal mean parameters in the setting of misspecification of the dependence
model under no missing data and under MAR missingness. We simulated longitu-
dinal nominal data under an NMREM. Covariates were time and group (2 levels).
The marginal probabilities for NMREM were specified as

log
(

P (Y ∗
it = k)

P (Y ∗
it = 3)

)
= βk0 + βk1timeit + βk2groupi + βk3 · timeit ∗ groupi,

β1 = (β10, β11, β12, β13) = (0.1, 0.2, 0.5, 0.7),

β2 = (β20, β21, β22, β23) = (0.2, 0.1, 0.4, 0.5),

where timeit = (t − 1)/8 for t = 1, · · · , 8 and groupi = 0 or 1 such that the
sample size per group was approximately equal for all times t. The conditional
probabilities were based on (2) and (3) with s = (s11, s21, s22) = (1.5, 0.1, 1.4) and
α = 0.3 (correlation= exp(−0.3) = 0.74). Note that s are nonzero elements of Σ1/2

2 .
We generated 200 simulated data sets with sample sizes of 200 and 300. We

fit 2 models. Model 1 is the true model; Model 2 is special case of Model 1 with
bit = bi0 ∼ N(0, Σ2) (ignoring the temporal dependence).

For missingness, we specified the following MAR dropout model,

logitP (dropout = t|dropout ≥ t) =
{−2.0 + 0.1Yit−12 + 0.2Yit−13, groupi = 1;
−1.5 + 0.2Yit−11 + 0.1Yit−12, groupi = 0.

Based on this specification, the observed dropout rates were approximately 40
percent.

Table 1 presents mean estimates, the root mean squared error (RMSE), and the
95% Monte Carlo error intervals of the parameters when there was no missing
data and the two sample sizes of 200 and 300 for each scenario. The estimates
were essentially unbiased with very similar RMSE’s for Models 1 and 2. The 95%
Monte Carlo error intervals contained the true values for the parameters. Thus,
the estimates of marginal mean parameters in our proposed model were robust to
misspecification of the dependence model.

In the presence of MAR dropout, we saw considerable bias when using the sample
size of 200, with percentage relative bias as large as 32% in the Models 1 and 2 for
the coefficients of interaction of group and time (β23) (see Table 2). Monte Carlo
error intervals for these estimated coefficients did not contain the true values.
This bias occurred because of small sample size. With the sample size of 300,
the estimates were essentially unbiased and the 95% Monte Carlo error intervals
contained the true values.

Overall, the simulation results indicate that marginal mean parameter estimates
were robust when the dependence model was incorrectly specified for complete data
but not for incomplete data. However, as sample size increased, the marginal mean
parameter estimates were also robust to the misspecification of dependence model.
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Table 1. Bias of maximum likelihood estimators under complete data sets. Displayed are the average regression

coefficient estimates and the root mean squared error (RMSE=

√∑
(β̂ − β)2/M) where M is the number of

simulated data sets. 95% Monte Carlo error intervals (β̄ ± 1.96
√

var(β̄)/M) in parentheses.
N = 200 N = 300

Model 1 Model 2 model 1 model 2
para. truth Mean RMSE Mean RMSE Mean RMSE Mean RMSE
β10 1.0 0.11 0.19 0.10 0.19 0.11 0.16 0.10 0.17

(0.08,0.13) (0.08,0.13) (0.09,0.13) (0.08,0.13)
β11 0.2 0.18 0.41 0.19 0.41 0.20 0.37 0.20 0.38

(0.13,0.24) (0.13,0.24) (0.15,0.25) (0.15,0.25)
β12 0.5 0.48 0.27 0.49 0.27 0.50 0.23 0.50 0.24

(0.45,0.52) (0.45,0.53) (0.46,0.53) (0.47,0.53)
β13 0.7 0.71 0.61 0.72 0.62 0.72 0.57 0.72 0.57

(0.63,0.80) (0.63,0.81) (0.64,0.80) (0.64,0.80)
β20 0.2 0.22 0.19 0.22 0.19 0.21 0.14 0.21 0.14

(0.20,0.25) (0.20,0.25) (0.19,0.23) (0.19,0.22)
β21 0.1 0.06 0.44 0.06 0.44 0.08 0.33 0.09 0.33

(-0.00,0.12) (0.00,0.12) (0.03,0.12) (0.04,0.13)
β22 0.4 0.38 0.28 0.38 0.27 0.40 0.22 0.40 0.22

(0.34,0.42) (0.34,0.41) (0.36,0.43) (0.37,0.43)
β23 0.5 0.50 0.63 0.52 0.62 0.51 0.53 0.51 0.53

(0.42,0.59) (0.44,0.61) (0.44,0.59) (0.44,0.59)

Table 2. Bias of maximum likelihood estimators under MAR missingness. Displayed are the average regression

coefficient estimates and the root mean squared error (RMSE=

√∑
(β̂ − β)2/M) where M is the number of

simulated data sets. 95% Monte Carlo error intervals (β̄ ± 1.96
√

var(β̄)/M) in parentheses.
N = 200 N = 300

Model 1 Model 2 model 1 model 2
para. truth Mean RMSE Mean RMSE Mean RMSE Mean RMSE
β10 1.0 0.13 0.20 0.13 0.20 0.11 0.17 0.10 0.17

(0.10,0.16) (0.10,0.15) (0.08,0.13) (0.08,0.13)
β11 0.2 0.19 0.66 0.18 0.66 0.19 0.52 0.19 0.52

(0.10,0.28) (0.09,0.28) (0.12,0.26) (0.12,0.26)
β12 0.5 0.46 0.31 0.46 0.31 0.51 0.25 0.51 0.25

(0.42,0.50) (0.42,0.51) (0.47,0.54) (0.47,0.54)
β13 0.7 0.70 0.95 0.71 0.95 0.73 0.71 0.73 0.72

(0.57,0.83) (0.58,0.84) (0.63,0.83) (0.63,0.83)
β20 0.2 0.20 0.18 0.19 0.19 0.21 0.18 0.21 0.18

(0.17,0.22) (0.17,0.22) (0.19,0.24) (0.18,0.23)
β21 0.1 0.14 0.62 0.14 0.64 0.04 0.55 0.05 0.55

(0.05,0.22) (0.06,0.23) (-0.03,0.12) (-0.02,0.13)
β22 0.4 0.42 0.27 0.42 0.27 0.39 0.25 0.40 0.25

(0.38,0.46) (0.38,0.46) (0.36,0.43) (0.36,0.43)
β23 0.5 0.34 0.87 0.34 0.89 0.58 0.75 0.59 0.75

(0.22,0.46) (0.22,0.46) (0.48,0.69) (0.49,0.70)

4. Example

4.1 Description of Data

Data from the McKinney Homeless Research Project (MHRP), a longitudinal study
employing a randomized factorial design [33, 34], were analyzed to assess whether
the use of Section 8 housing certificates effectively provided housing options for
homeless individuals with severe mental illness. The 361 clients in this data set were
randomly assigned to either comprehensive or traditional supportive case manage-
ment, and to either of two levels of access to independent housing using Section
8 certificates. Hedecker [20] examined the effect of acess to Section 8 certificates
on repeated housing status outcomes across time using mixed-effects multinomial
regression models.

Housing status outcomes were nominal-level and were determined on each indi-
vidual at four different times: baseline, and at 6, 12, and 24 months of follow-up.
There were three different outcomes: 1) streets/shelters, 2) community housing,
and 3) independent housing. As analyzed in Hedecker [20], we focus on assessing
the effect of whether there is access to Section 8 certificates (yes or no) on housing
status outcomes over time in a homeless mentally ill population using NMREM.
For our analyses, the housing status outcome of street/shelter was chosen as the
reference category.

About 25 percent of the subjects dropped out of the study during the follow-up
period resulting in some missing housing outcome status data. Since estimation of
model parameters is based on a full-likelihood approach, the missing data are as-
sumed to be ‘ignorable’ conditional on both the model covariates and the observed
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nominal responses [3]. To focus on describing our proposed model, we assume the
missing data are ignorable in our analysis.

4.2 Computations

Implementing the Quasi-Newton algorithm in this setting is computationally in-
tensive because estimates and derivatives of ∆itk require the Newton-Raphson al-
gorithm for all subjects at all times within each Fisher-scoring step. We used simul-
taneously R 2.8.1 software (http://www.r-project.org) and FORTRAN 77. The R
software was used for the Quasi-Newton iteration and FORTRAN 77 was used to
make subroutines (.dll files) to implement the calculation of ∆ using the Newton-
Raphson and of derivatives of ∆. The R code and the Fortran .dll files are available
upon request. Each Quasi-Newton step for the NMREM required approximately
40 seconds. To minimize the number of iterations until convergence, we used good
initial values obtained by fitting an independent nominal logit model. For example,
in our analysis below, we obtained convergence in about 50 iterations using a fairly
strict convergence criterion,

√(
θ̂old − θ̂new

)T (
θ̂old − θ̂new

)
≤ 10−4

where θ̂new and θ̂old are current and previous fitted values of parameters, respec-
tively.

4.3 Model Fits

We fit four models under an assumption of ignorable dropout. Model 1 was NM-
REM with Σ1 and Σ2 as in (5) and (6) and Model 2 was a special case of Model
1 with only Σ2. Model 3 was an independent multinomial model. Model 4 was a
mixed-effects multinomial logistic regression model that was proposed in Hedeker
(2003).

Maximized loglikelihood and AIC for Models 1-3 are given in Table 3 and those
for Model 4 are -1109.365 and 2254.730, respectively. The likelihood ratio test for
the comparison of Model 3 and Model 2 indicated that Model 2 fits much better
than Model 3 (4D23 = 2 × (1176.523 − 1090.551) = 171.944, p−value= 0.000
on 3 d.f.). To compare the fit of the two models (Models 1 and 2), we computed
the likelihood ratio test. Comparison of deviances for Models 1 and 2 which were
nested yielded 4D12 = 2 × (1090.551 − 1078.677) = 23.748, p−value< 0.001 on
1 d.f. This comparison indicated that Model 1 provided a significantly better fit
than Model 2. Using a penalized model selection criterion (AIC) indicated Model
1 provided a better fit than Model 4 (2197.354 and 2254.730 for Model 1 and
4, respectively). These comparisons indicated that the Model 1 fit best among the
four models. Compared with the best marginalized transition model (MTM) in Lee
and Mercante (2010), the AIC for the MTM was 2194.690 which is very similar to
that for Model 1 (2197.354) in this paper. This means that the MREM is a good
alternative to the MTM for analysis of this data set.

Since our main interest was marginal relationship between marginal mean and
covariates, we compared estimates of marginal mean parameters from Models 1,
2, and 3. Table 3 presents maximum likelihood estimates of marginal mean pa-
rameters. Results are organized into two parts based on which nominal housing
status outcome responses are being compared: either 1) street/shelters compared
to community or 2) street/shelters compared to independent housing.



August 3, 2010 9:38 Journal of Applied Statistics Fi-
nal˙Resubmitted˙nominal˙Marginalized˙random˙effect˙model˙JAS

Journal of Applied Statistics 9

Table 3. Maximum likelihood estimates for NMREMs (Models 1 and 2) and independent multinomial logit model

(Model 3). Standard errors are in parentheses.

Model 1 Model 2 Model 3
Community vs Street/Shelter
Intercept −0.52∗ (0.17) −0.50∗ (0.16) −0.49∗ (0.16)
6 month vs. baseline 0.43 (0.23) 0.43 (0.23) 0.43 (0.23)
12 month vs. baseline 1.59∗ (0.21) 1.62∗ (0.23) 1.63∗ (0.27)
24 month vs. baseline 2.35∗ (0.33) 2.32∗ (0.34) 2.37∗ (0.34)
Section 8 (yes=1,no=0) 1.70∗ (0.31) 1.71∗ (0.29) 1.79∗ (0.31)
Section 8 by 6 month −0.32 (0.35) −0.36 (0.39) −0.46 (0.43)
Section 8 by 12 month −2.10∗ (0.51) −2.06∗ (0.49) −2.12∗ (0.49)
Section 8 by 24 month −0.92 (0.46) −0.94 (0.43) −1.09∗ (0.45)
Independent vs Street/Shelter
Intercept −1.52∗ (0.24) −1.64∗ (0.25) −1.66∗ (0.25)
6 month vs. baseline 0.40 (0.32) 0.52 (0.33) 0.54 (0.34)
12 month vs. baseline 1.73∗ (0.25) 1.84∗ (0.29) 1.90∗ (0.35)
24 month vs. baseline 2.75∗ (0.37) 2.88∗ (0.38) 2.97∗ (0.40)
Section 8 (yes=1,no=0) 2.60∗ (0.34) 2.75∗ (0.32) 2.88∗ (0.37)
Section 8 by 6 month 1.32∗ (0.38) 1.24∗ (0.43) 1.13∗ (0.50)
Section 8 by 12 month −0.09 (0.48) −0.02 (0.48) −0.04 (0.52)
Section 8 by 24 month 0.22 (0.47) 0.05 (0.43) −0.07 (0.50)
s11 4.97 (2.85) 1.65∗ (0.43)
s21 6.87 (3.94) 1.76∗ (0.20)
s22 4.30∗ (2.08) 1.66∗ (0.18)
α 0.41∗ (0.09)
Max. loglik. −1078.677 −1090.551 −1176.523
AIC 2197.354 2219.102 2385.046

* indicates significance at 5% level.

Point estimates and standard errors for marginal mean parameters for Models
1, 2, and 3 were similar. Now we focus on Model 1 which was the best fit among
four models. The first part of the Table 3 presents estimates of coefficients and
corresponding standard errors for comparing the two nominal response categories
of community and street/shelter (reference category).

log
P (Community)

P (Street/Shelter)
= −0.52 + 0.43t1 + 1.59t2 + 2.35t3 + 1.70Section 8

−0.32t1Section 8− 2.10t2Section 8− 0.92t3Section 8,

where t1, t2, and t3 are indicators for 6, 12, and 24 months, respectively. The
regression coefficients of the indicator variables for the association between Section
8 certificate status and 12 and 24 months of follow-up were statistically significant.
The regression coefficient of the interaction of 12 month and Section 8 certificate
was also significant. Combining the logit estimates for the main effect of Section 8
certificate (1.70) and the interaction of 12 month and Section 8 certificate (-2.10)
yielded an estimated odds ratio (OR) of e−0.40 = 0.670, suggesting individuals
with access to Section 8 certificates were less likely to be in community housing as
opposed to street/shelter housing at 12 month.

In the lower part of Table 3, independent housing is compared to the reference
category, street/shelter.

log
P (Independent)

P (Street/Shelter)
= −1.52 + 0.40t1 + 1.73t2 + 2.75t3 + 2.60Section 8

1.32t1Section 8− 0.09t2Section 8 + 0.22t3Section 8,

The regression coefficients of the indicator variables for 12, 24 months, and Section
8 certificate status were significant and the regression coefficients of the interac-
tion of 6 month and Section 8 certificate was also significant. Combining the logit
estimates for Section 8 (2.60) and the interaction of 6 month and Section 8 certifi-
cate (1.32) yielded an estimated odds ratio of e3.92 = 50.400 suggesting individuals
with Section 8 certificates were much more likely to be in independent housing in
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(b) Community housing
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(c) Independent housing

Figure 1. Maximum likelihood estimates of marginal probabilities for street/shelter, community, and
independent housings, respectively. Solid line is for control group; Dashed line is for Section 8 group.

6 month than in street/shelter housing.
The estimates of correlation parameter (α) was significant and corresponded to

an estimated correlation of ρ̂ = exp(−α) = exp(−0.41) = 0.66. The estimated
values for s11, s21, and s22 in Model 1 were relatively large compared with those
in Model 2 because the number of replications was small (T = 4). MLEs of the
marginal probabilities of three housing types are given by Figures 1(a)-1(c). Each
figure compares the MLEs of the marginal probabilities for the Section 8 vs. control
groups. In the community housing, the two estimated marginal probabilities were
different as month increased. Whereas, the difference of the two estimated marginal
probabilities in the street/shelter housing decreased as month increased. However,
we know that there were large differences between the Section 8 and control groups
in independent housing. The estimated marginal probabilities for community with
section 8 group was higher than those with control group. However, the estimated
marginal probabilities with control group was higher than those with section 8 in
the street/shelter and community housings.

5. Conclusion

In this paper the use of marginalized random effects models to analyze longitudi-
nal nominal data were proposed. Marginal probabilities as a function of covariates
were used for modeling the average effects of the covariates while dependence prob-
abilities accounted for the longitudinal and categorical correlations via random ef-
fects. To explain these correlations, we used a covariance matrix with a Kronecker
product composition which accounted for serial dependence and correlation among
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categories at same time.
The proposed models were implemented using a likelihood approach for param-

eter estimations. Quasi-Monte Carlo methods were used in likelihood estimations
and in calculation of ∆ to numerically integrate over the distribution of random
effects. Simulation studies indicated that marginal mean parameter estimates were
robust when the dependence model was incorrectly specified for complete data and
for incomplete data with large sample size.

In the NMREM, the number of variance parameters in Σ2 increases exponentially
with the number of categories, K. Therefore, we can apply the NMREM to the
data with moderate or large sample size when K is moderately large. Alternatively,
we consider a simple structure of Σ2 with equal elements of covariances.

Computing time is major potential problem with the use of NMREM. Due to
using Newton-Raphson for the calculation of ∆, it takes considerable time for the
calculations with large sample sizes. However, with our example data, our algorithm
took a more reasonable time for the calculations.
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APPENDIX

Detailed Calculation of Quasi-Newton for MREM
The forms of the derivatives for Quasi-Newton algorithm follow

∂ log L

∂βj
=

N∑

i=1

L(θ; yi)−1

∫
L(θ; yi, ai)

[
ni∑

t=1

{
K∑

k=1

(yitk − P c
itk(ai))

∂4itk

∂βj

}]
dai,

∂ log L

∂α
=

N∑

i=1

L(θ; yi)−1

∫
L(θ; yi, ai)

[
ni∑

t=1

{
K∑

k=1

(yitk − P c
itk(ai))

∂s(t)

∂α
a

(t)
i

}]
dai,

∂ log L

∂γj
=

N∑

i=1

L(θ; yi)−1

∫
L(θ; yi, ai)

[
ni∑

t=1

{
K∑

k=1

(yitk − P c
itk(ai))

(
∂4itk

∂γj
+

∂s(t)

∂γj
a

(t)
i

)}]
dai,

where γj = (γj1, · · · , γjj)T is nonzero elements of Σ1/2
2 .

To compute the score vector and information matrix, we also need derivatives of
4it with respect to c and β. They can be obtained as the solution to the following
system of linear equations, To compute the score vector and information matrix,
we also need derivatives of 4it with respect to β, α and γ. They can be obtained
as the solution to the following system of linear equations,

∂PM
itk

∂βj
=

∂4it1

∂βj

∫
∂P c

itk(bit)
∂4it1

φ(bit)dbit + · · ·+ ∂4itK−1

∂βj

∫
∂P c

itk(bit)
∂4itK−1

φ(bit)dbit,

−
∫ K−1∑

l=1

∂P c
itk(bit)

∂s
(t)
l

∂s
(t)
l

∂γj
φ(bit)dbit

=
∂4it1

∂γj

∫
∂P c

itk(bit)
∂4it1

φ(bit)dbit + · · ·+ ∂4itK−1

∂γj

∫
∂P c

itk(bit)
∂4itK−1

φ(bit)dbit,

where

∂P c
itk(bit)

∂4itj
=

{
P c

itk(bit)(1− P c
itk(bit)), if j = k;

−P c
itk(bit)P c

itj(bit), if j 6= k,

for k, j = 1, · · · ,K − 1. We solve for ∂4itg

∂β
(n)
j

and ∂4itg

∂cj
using these K − 1 equations.

Calculation of 4it

From (4), we know that 4itk are a function of β and σ. Estimates of
4it = (4it1, · · · ,4it,K−1) can be obtained using Newton-Raphson as follows. Let
f(4it) = (f1(4it), · · · , fK−1(4it)) where fk(4it) =

∫
P c

itk(bit)φ(bit)dbit −PM
itk. We

obtain

4(n+1)
it = 4(n)

it −H−1(4(n)
it )f(4(n)

itk ),
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where

H(4it) =




∂f1(4it)
∂4it1

· · · ∂f1(4it)
∂4it,K−1

...
. . .

...
∂fK−1(4it)

∂4it1
· · · ∂fK−1(4it)

∂4it,K−1


 ,

∂fk(4it)
∂4itj

=
{∫

P c
itk(bit)(1− P c

itk(bit))φ(bit)dbit, if j = k;
− ∫

P c
itk(bit)P c

itj(bit)φ(bit)dbit, if j 6= k.


