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SUMMARY

Previous studies have suggested a link between alcohol outlets and assaults. In this paper, we explore
the effects of alcohol availability on assaults at the census tract level over time. In addition, we use a
natural experiment to check whether a sudden loss of alcohol outlets is associated with deeper decreasing
in assault violence. Several features of the data raise statistical challenges: (1) the association between
covariates (for example, the alcohol outlet density of each census tract) and the assault rates may
be complex and therefore cannot be described using a linear model without covariates transformation,
(2) the covariates may be highly correlated with each other, (3) there are a number of observations
that have missing inputs, and (4) there is spatial association in assault rates at the census tract level.
We propose a hierarchical additive model, where the nonlinear correlations and the complex interaction
effects are modeled using the multiple additive regression trees and the residual spatial association in the
assault rates that cannot be explained in the model are smoothed using a conditional autoregressive (CAR)
method. We develop a two-stage algorithm that connects the nonparametric trees with CAR to look for
important covariates associated with the assault rates, while taking into account the spatial association of
assault rates in adjacent census tracts. The proposed method is applied to the Los Angeles assault data
(1990–1999). To assess the efficiency of the method, the results are compared with those obtained from
a hierarchical linear model. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Research on the relationship between alcohol outlets and assault is important for informing policy
related to the competing interests of the alcohol industry, e.g. to increase the distribution and
consumption of alcohol, and public safety, e.g. to minimize risks associated with increasing the
alcohol availability. There are growing literature that demonstrate relations between alcohol outlets
and measures of interpersonal violence. Since the effect of alcohol outlets on violence is believed
to be contextual, these analysis involve areal data that require more sophisticated techniques to
account for their spatial structure. Initial studies on the role of alcohol outlets in the neighbor-
hood environment and assault were ecological in design and conducted at the city level [1–3].
As geographical information systems (GIS) software became widely available, more local units
of analysis (e.g. census tracts) were used in modeling the relation between alcohol outlets and
assault [4, 5]. Accounting for spatial autocorrelation, i.e. the possible spillover of assault into
contiguous neighborhoods, was a subsequent advancement [6–9]. Recently, longitudinal models
are being incorporated into the analysis of the data, introducing an additional level of complexity,
i.e. temporal structure [10].

In this study we apply a hierarchical additive model to explore possible coefficients that are
related to changes in assault rates among census tracts affected by the 1992 Civil Unrest in Los
Angeles, which resulted in the immediate loss of over 250 alcohol outlets and the permanent loss
of roughly 150 alcohol outlets. We use this natural experiment to check whether a sudden loss
of alcohol outlets is associated with deeper decrease in assault rates. We want also to check in
general, whether alcohol outlet density is positively related to assault rates.

Several features of the data present substantial challenges in this study of contextual effects of
alcohol outlets. First, the association between the assault violence rates and other covariate may
be nonlinear. There are two common approaches to deal with nonlinearity: (1) transformation and
(2) basis expansion (such as spline basis). However, the former is not readily applicable when
there are a large number of covariates, while the latter requires basis specification (e.g. specify the
number and locations of knots). Second, complicated interactions might exist among covariates.
We could use model selection methods such as Akaike’s Information Criterion (AIC) and Bayesian
Information Criterion (BIC) to choose appropriate interaction terms. But then we need to create all
possible interactions. In addition the test of all combination of variables results in big calculation
burden. Third, more than 7 per cent of the observations are missing one or more values for some
covariates. Finally, in the analysis, we should take into account the spatial correlations among
observations in adjacent tracts. A handy method to deal with the correlation is to use a hierarchical
model where the spatial correlations are modeled through correlated spatial random effects. We are
consequently challenged by combining the hierarchical structure of spatial errors with nonlinear
models. In this analysis, we apply both multiple additive regression trees (MART) and conditional
autoregressive model (CAR) to both address these challenges and provide a better description of
the relations between covariates and the assault.

MART, originally proposed by Friedman [11], is an ensemble technique that aims to improve
the performance of a single model by fitting many models and combining them for prediction.
MART employs two algorithms: ‘regression tree’ from classification and regression trees (CART)
[12] and ‘boosting’, which builds and combines a collection of models, i.e. trees.

CART is a binary recursive partitioning algorithm that provides an alternative to traditional
parametric models for regression and classification problems. The term ‘binary’ implies that at each
step, CART splits a multidimensional covariate space into two regions, and models the response
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as a constant for each region. Then an optimal variable and split-point are chosen to achieve the
best fit again on one or both of these regions. Thus, each node can be split into two child nodes,
in which case the original node is called a parent node. The term ‘recursive’ refers to the fact that
the binary partitioning process can be applied over and over again. Thus, each parent node can
give rise to two child nodes and, in turn, each of these child nodes may themselves be split to
generate additional children. Although CART represents information in a way that is intuitive and
easy to be visualized, it is not usually as accurate as its competitors.

Boosting is one of the recent enhancements to tree-based methods that have met with considerable
success in prediction accuracy. In boosting, models such as regression trees are fitted iteratively
to the training data, using appropriate methods to gradually increase emphasis on observations
modeled poorly by the existing collection of trees.

Empirical results have shown that MART achieves accurate prediction performance compared
with its competitors. Moreover, compared with the classical parametric regression methods, MART
has the following advantages: (1) MART is able to capitalize on the nonlinear relationships between
the dependent and independent variables with no need for specifying the basis functions. Unlike
many automated learning procedures, which lack interpretability and operate as a ‘black box’,
MART provides results that represent valuable tools for interpreting the nature and magnitude of
covariate relations with the outcome (see, for example, relative variable importance and partial
dependence plot in Section 3.4). (2) Owing to the hierarchical splitting scheme in regression trees,
MART is able to capture complex and/or high-order interaction effects. (3) As a tree-based method,
MART can handle mixed-type predictors (i.e. quantitative and qualitative covariates) and missing
values in covariates. Therefore MART addresses the first three challenges in analyzing the data.
Further description of MART is given in Section 3.1.

To tackle the last challenge related to the spatial structure of data, we propose a two-stage
iterative algorithm to build hierarchical additive models. At the first stage, MART is built to explore
the associations between the smoothed assault rates and the covariates. Here the smoothed assault
rates refer to the original assault rates minus the estimated spatial terms obtained from the second
stage. At the second stage, the spatial correlations in assault rate that could not be explained by
covariates are ‘smoothed’ through the CAR. The two stages iterate until convergence. Our algorithm
is an extension of the backfitting process [13] to more complicated nonparametric settings. In this
paper, we apply the hierarchical additive modeling strategy to evaluate the association between
the alcohol availability and assault rates in census tracts of Los Angeles affected by the 1992 civil
unrest for the years 1990–1999.

The rest of the paper is organized as follows. We describe in Section 2 the data and environment.
Next, the two-stage hierarchical additive model is presented in Section 3. In Section 4, we apply
the hierarchical additive model to analyze the data and the results are compared with those from
a hierarchical linear regression model. Concluding remarks and implications of the research are
provided in Section 5.

2. THE 1992 CIVIL UNREST AND DATA

2.1. The 1992 civil unrest

Our study is designed to capitalize on a natural experiment. The experiment was made possible
by the civil unrest in Los Angeles that followed the verdicts acquitting the police officers accused
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of beating Rodney King. The civil unrest resulted in 53 deaths, 2325 reported injuries, more
than 600 buildings were completely destroyed by fire, and approximately $ 735 million in total
damages [14]. Many of the buildings destroyed were serving as alcohol outlets. As a result, a total
of 279 liquor licenses were surrendered across 144 census tracts in Los Angeles County due to
interruption of their services. In the wake of the civil unrest, an effort to halt the rebuilding of
off-sale alcohol outlets was successful in restricting the re-licensing of outlets with a history of
problems (e.g. assaults, homicides, drug sales) around their premises. The effort was responsible,
in part, for over 150 outlets permanently closing in the civil unrest area. These events provide
a natural experiment setting to test various hypotheses regarding the effect of closure of alcohol
outlets in 144 tracts, compared with 336 tracts also exposed to the civil unrest where outlets were
not affected [15].

The 1992 civil unrest occurred over a large area of South Central Los Angeles. In the present
study we include only those census tracts in the area that were affected by the civil unrest, thereby
controlling a possible global effect of the unrest on outcomes. To define the study area in this
manner, we used the definition established by the Rose Institute of California State and Local
Government at Claremont McKenna College (http://ccdl.libraries.clare- mont.edu/col/ric/) to study
the economic impact of the civil unrest [16]. A total of 480 census tracts comprise the unrest
area. These tracts contained 2 641 320 people in 1990, of whom 48 per cent were Hispanic and
27 per cent were African American. A total of 2240 unique addresses were damaged in the 480
tracts, while 144 tracts had one or more off-sale liquor outlets whose license was surrendered. The
majority of the damaged addresses were commercial businesses. Immediately following the civil
unrest, there emerged a grass roots effort among the affected communities to halt the rebuilding
of alcohol outlets based on the finding that an over-concentration of outlets existed in the low
socio-economic status areas prior to the civil unrest [17–19].

2.2. Data

The study time frame is 1990–1999. The purpose of this study is to check whether a sudden
decreasing in alcohol outlet is related to a deeper drop in assault rates in the following years, and
we want to check the general relationship between the alcohol outlet density and assault rates. We
do this study at the census tract level. To do the analysis, we should consider other related factors
such as the race distribution in the census tract. We should also take into account the possible
spatial association among adjacent tracts.

Assaultive violence: Our measure of assault was obtained from the Los Angeles Police Depart-
ment. Uniform crime report (UCR) offenses involving assault (i.e. murder, rape, robbery, and
assault) were obtained for the years 1990–1999. A summary measure of the count of all violent
offenses was generated for each census tract for all the study years by geocoding the data that
contained the street address of the offense location.

Alcohol outlet density: Three measures of exposure to alcohol outlets were included in the
analysis: (1) a dichotomous measure of whether or not a liquor license was surrendered in the
census tract following the May 1992 civil unrest, (2) the percentage of all off-sale and on-sale liquor
licenses surrendered in the census tract, and (3) the annual off-sale and on-sale outlet densities
from 1990–1999. Annual counts of liquor outlet licenses came from the California Department
of Alcohol Beverage Control (ABC). A list of outlets that surrendered their licenses and a list
of stores damaged as a result of the 1992 Los Angeles civil unrest were also obtained from the
ABC. Alcohol outlets were classified based on their license to sell alcohol for on-premise (bars
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and restaurants) or off-premise (liquor stores, grocery stores, and convenience stores) consumption
using license codes provided by the ABC. All unique address listings were geo-coded and mapped
to the 1990 census-defined areas, and individual data sources were matched by census tract.
Ninety-eight per cent of addresses were matched using Arcview 3.2 GIS software (ESRI Inc.,
Redlands, CA) along with Los Angeles County Topographically Integrated Geographic Encoding
and Referencing (TIGER) street files from the 2000 census. The addresses that the computer was
unable to match were hand placed with the help of an Internet mapping site (Mapquest) and a
Thomas Guide map book.

Additional covariates: Additional tract-level covariates included in the analysis were: (1) annual
percentage of African American residents, (2) annual percentage of Hispanic residents, (3) annual
percentage of all males between the ages of 15 and 30 years, (4) extent of physical damage in the
census tract, and (5) population density. The first four covariates are annual estimates available
for the years 1990–1999 and are included to control for changes in tract composition over time,
an endogenous change that could explain temporal changes in assault rates. For example, it is
possible that changes in assault are the result of the movement of populations at higher or lower
risk for violence into or out of particular study tracts over the course of the observation period.

The annual estimates of population distributions by age, race, and sex were obtained from the
Los Angeles County Department of Health Services, with actual counts available for 1990 and
1995 and counts for the other years estimated from the birth and death records. The remaining
socio-demographic data were obtained from the 1990 Census data for Los Angeles County. Infor-
mation on damaged buildings [20] came, directly or indirectly, from four different sources: the
Los Angeles City Department of Building and Safety, the Korean Central Daily, the California
Insurance Commission, and the Compton Department of Building and Safety. Physical damage is
measured as a binary indicator of any damage to a property in a tract due to the civil unrest. We
also derived a measure of damage density (i.e. damage per square mile) calculated as the ratio of
the number of unique addresses damaged in the 1992 civil unrest to the amount of land in the tract
used for the commercial purposes. The denominator corresponds to land used for the commercial
purposes because most of the damaged property was commercial. To compute the denominator,
we estimated the proportion of commercial space in the tract using a land use file and multiplied
it by the area of the tract in 1990 in square miles.

3. HIERARCHICAL ADDITIVE MODELING

In this section, the basic ideas of the MART and CAR methods are reviewed and then the
hierarchical additive model is proposed. We describe the related algorithm used in model building
and show how to explain the models.

3.1. Multiple additive regression trees

MART is a special case of the generic gradient boosting approach developed by Friedman [11].
Given n observations of the form {yi ,xi }n1 ={yi , xi1, . . . , xip}n1 and any differentiable loss func-
tion L(y,F(x)), MART considers the common problem of finding a function F(x) mapping a
p dimensional input vector x to response variable y, such that over the joint distribution of all
(y,x) values, the expected loss, L(y,F(x)), is minimized. MART approximates the target function
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F(x) by an additive expansion of trees

f̂ (x)=
M∑

m=1
�bH (x;cm) (1)

where bH (x;cm) is an H -terminal node tree (which partitions the input space into H -disjoint
regions); cm is the parameter vector in building tree m, and �∈(0,1) is the ‘shrinkage’ parameter
(0<��1) that controls the learning rate of the procedure. Empirical results have shown (see e.g.
[11, 21] that small values of � always lead to smaller generalization error. The detailed algorithm
of MART (for regression) is the following.

Algorithm 3.1 (MART algorithm (Friedman [11]))
(1) f̂0(x)=arg min

�

n∑
i=1

L(yi ,�).

(2) Repeat for m=1,2, . . . ,M :

(a) ỹi =−[�L(yi , f (xi ))/� f (xi )
]
f (x)= f̂m−1(x)

, i=1,2, . . . ,n.

(b) {Rhm}H1 =H -terminal node tree on {ỹim,xi }n1.
(c) �hm =arg min

�

∑
xi∈Rhm

L(yi , f̂m−1(xi )+�).

(d) f̂m = f̂m−1+�·�hm I (x∈ Rhm).

(3) End algorithm.

Within each iteration m, a regression tree, whose splitting scheme {Rhm}Hh=1 is optimized

based on the negative gradient {ỹi } at its current estimate f̂m−1 (which is closely related to the
steepest-descent minimization approach in function optimization), is fitted with an estimate �hm
in each region. The value of M , i.e. the number of iterations or trees, can be chosen based on
either cross-validation or monitoring the prediction performance on ‘out-of-bag’ samples with
subsampling in each iteration (see [22]). Note that in practice, we can pre-specify the maximum
depth D for an individual tree instead of the number of terminal nodes H . For example, the
tree with D=1 (single-split trees with only two terminal nodes) fits an additive model without
interaction and the MART-fitted model with D=3 is able to account for at most three-way
interactions. For details of MART and gradient boosting, we refer the readers to the original paper
by Friedman [11]. In this paper, MART is run by using the gbm package in R, produced by the
Greg Ridgeway.

3.2. Conditional autoregressive model

We use the vector {�Ti ,Ci
} to capture spatial autocorrelations among areas Ci at time Ti , where

i=1, . . . ,n and n is the total number of observations; Ti =1, . . . ,T, where T is the total number
of time slots and Ci =1, . . . ,C where C is the total number of locations. A popular model for the
spatial correlation arises by assuming that an area Ci is correlated with only the areas that are
adjacent to it. Let f (x), a function of the covariate vector x, explores the association between x
and the response variable y. We have the following model for y with a hierarchical structure on
its mean function:

yi ∼N(�i ,�
2) and �i = f (xi )+�Ti ,Ci

(2)
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where yi is the observed value of the response variable in the area Ci at time Ti . We apply
a conditional autoregressive (CAR; [23]) structure for the spatial term �Ti ,Ci

. Let j ∼ i denote
adjacency of regions i and j , and n j be the number of tracts adjacent to tract j . The hierarchical
CAR structure for {�Ti ,Ci

} has the form

�Ti ,Ci= j |�Ti ,Ci �= j ∼N

(∑
k∼ j

1

n j
�Ti ,k,

1

n j�Ti

)
(3)

where �Ti is the precision parameter controlling the degree of spatial smoothing in Ti . We employ
the Winbugs software to search for the estimates of �. We use equation (3) as the prior distribution
for � and also, we assign the temporal smoothing term �Ti and the random precision term 1/�2 as a
noninformative uniform hyper distribution ranging from 0 to ∞. The maximum a posteriori (MAP)
estimate of � with this prior is equivalent to the MLE of our spatial terms with a hierarchical
CAR structure. The estimates are called ‘generalized MLE’. We obtain posterior distributions for
� via Markov chain Monte Carlo (MCMC) algorithms implemented in WinBUGS (free software
available at http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml). Notice that we can also obtain
MLE for � through other iterative optimization algorithms.

3.3. The two-stage iteration algorithm

To combine the MART, which explores the variable relationship, with the CAR, which identifies
a spatial autoregressive structure, we propose a two-stage iterative algorithm. In the first stage,
explore the relationship between the covariates and response variable. In the second stage, we
smooth the residual spatial correlations that have not been explained by the covariates. To avoid
redundancy, the observations for those years that the covariates can satisfactorily explain most
of the spatial correlation in the response variables are not analyzed in the second stage. We use
the test statistic Moran’s I [24] to test whether there is a spatial correlation remaining in y. An
additive structure was assumed between f (x), i.e. the effects on y from the covariate x, and the
remaining spatial correlations. In the algorithm, x is the vector of possible covariates, q is the
count of iterations, � is a small constant set beforehand to control convergence, and � is used
to test convergence, i.e. measuring the relative difference in the expected values of the responses
from the last iteration to the current iteration.

Algorithm 3.2 (Two-stage analysis)

(1) Let �0
Ti ,Ci

=0 where Ci ∈{1, . . . ,C}, Ti ∈{1, . . . ,T }; q=0, �=1000, �1i =0 and i=1, . . . ,n.
(2) If �<�, go to step (3), otherwise q=q+1 and

(a) Let zi = yi −�[q−1]
Ti ,Ci

. Fit MART f [q](x) on z and the covariates x.
(b) Let ei = yi − f [q](xi ), calculate the Moran’s I of ei within time slots 1 to T . Let S be

the collection of time slots in which the spatial correlation test show a p-value smaller
than 0.01 (this indicates a strong spatial correlation in ei ).

(c) If S is empty, let �[q]
Ti ,Ci

=0 and go to step (3); otherwise

for the observations i ∈{i :Ti ∈ S}, let the f (xi ) in equation (2) be f [q](xi ) and calculate
the generalized MLEs of �̂Ti ,Ci

. Let �[q]
Ti∈S,Ci

= �̂Ti ,Ci
and �[q]

Ti /∈S,Ci
=0.
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(d) Let �0i =�1i , �1i = f [q](xi )+�[q]
Ti ,Ci

and let �=∑n
i=1(�1i −�0i )

2/
∑n

i=1�21i , go
back to (2).

(3) Output the results from step q .

Little is known of the convergence properties of the above procedure. In proposing the iterated
conditional modes, Besag [25] discussed the complication in parameter estimation when there are
other parameters to be estimated besides the variance structure. Ideally, f (x) and � are estimated
from the training data alone and the estimated values are used in the subsequent reconstructions.
Typically, no training data are available and it is necessary to estimate f (x) and � as a part of
the restoration procedure. Meng and Rubin [26] showed that under certain conditions, iterative
conditional maximization converges to local maximizers. But the problem is even more complicated
in the current analysis as the whole function (building of multiple trees) have to be estimated
rather than just a few parameters. Our algorithm is essentially a backfitting process [13] with
the MART and the CAR variance structure as two additive components. Buja et al. [27] proved the
convergence of the backfitting process for a certain class of fixed, nonadaptive operators and the
algorithm was well behaved in general [13]. In our analysis, we let �=10−7. That is, if the relative
difference, �, in response means between two sequent iterations is less than 10−7, we conclude
that the algorithm converges.

3.4. Interpretation

One of the most important aspects in the interpretation of the results involves the identification of
the relative importance of covariates in terms of their relative strength in predicting the response,
and understanding their joint effects on the response. For tree-based methods, Breiman et al. [12]
proposed a measure of importance I 2j (bH ) for each variable x j , based on the number of times
that variable was selected for splitting in the tree bH weighted by the squared improvement to the
model as a result of each of those splits. Friedman [11] generalized this importance measure to
additive tree expansions by taking the average over the trees

I 2j = 1

M

M∑
m=1

I 2j (bH (x,�m)) (4)

The measure (4) turns out to be more reliable than a single tree as it is stabilized by averaging.
Since these measures are relative, we scale the measure so that the importance of all the variables
sum to 100 per cent.

In addition to the importance measure, Friedman [11] also introduced a concept called partial
dependence to describe the dependence of the fitted model on a subset of variables. Given any
subset xs of the input variables indexed by s⊂{1, . . . , p}, the partial dependence is defined as

Fs(xs)=Ex\s [ f (x)] (5)

where Ex\s [·] means expectation over the joint distribution of all the input variables not indexed
in s. In practice, partial dependence can be estimated from the data by

F̂s(xs)= 1

n

n∑
i=1

f̂ (xs,xi\s) (6)

where {xi\s}n1 are the data values of x\s . The bootstrap method provides confidence intervals, and
then we can make inferences on both the partial dependence and the importance measure.
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To explore the spatial autocorrelations, we draw a map with the MLEs of spatial random effects.
The spatial random effects are residuals that are spatially correlated and cannot be explained by
the covariates in the model. The map of spatial random effects could suggest various spatially
varying covariates that are still missing in the model.

4. THE HIERARCHICAL ADDITIVE MODEL APPLICATION
TO THE ALCOHOL-RELATED CRIME STUDY

In this section, the hierarchical additive model developed in Section 3 is used to analyze the data
introduced in Section 2. The purpose of the analysis is to determine whether there is an association
between the alcohol outlet measures and the assault. Furthermore, if there is an association, how
it is related. In addition, we want to search for the other factors that are important in predicting
the assault rates. In this analysis, the response variable is defined to be

yi = log

[
(number of assault)i +0.0001

populationi
×1000

]

the assault rate per 1000 people. We add 0.0001 to the number of assault to avoid the complication
when the number of assault is 0. The area unit in this analysis is census tract, ranging from 1 to
290, and the time unit is year.

We have 10 years data from 1990 to 1999. An exploratory analysis suggests that we use
the possible covariates: (1) heterogeneity in race—the covariates represent the annual proportion
of residents that are black, white, Asian, and Hispanic (the variable names in the model are
‘black’, ‘white’, ‘asian’, and ‘hispanic’); (2) annual proportion of young males in census tract
(‘male 15 30’); (3) percentage of households in poverty (‘poverty’) in 1990; (4) damage level
measuring the relative damage caused by civil unrest—the covariate is called ‘damage’, calculated
as the number of damaged addresses in the tract divided by the tract area in square miles;
(5) the years (‘year’) and (6) the alcohol outlet measures, including the on-premise, off-premise,
total alcohol outlet density, and the indicator variables of the liquor license surrender during the
civil unrest.

4.1. Relative variable importance and partial dependence

The following two models are fitted. In model A, the variable ‘totaldensity’, which is defined as
the number of on-premise and off-premise alcohol outlets per roadway mile, is used to test the
association between the alcohol outlets and assault. We also include the variables ‘pctonsurryn’ and
‘pctoffsurryn’, the percentages of on-premise and off-premise alcohol licenses surrendered in the
1992 civil unrest separately, to check if a sudden loss of alcohol outlets led to a change in assault
violence rates. In model B, we use ‘onsale’ and ‘offsale’, the on-premise and off-premise alcohol
outlet densities per roadway mile, to check whether on-premise or off-premise alcohol availability
is more important in predicting the assault. In this model, we use two indicator variables ‘onsurryn’
and ‘offsurryn’, to indicate whether there is on-premise or off-premise alcohol license surrenders
in the corresponding census tract in the 1992 civil unrest. In MART, we set the learning rate � at
0.001 and the maximum depth for each individual tree at 3, i.e. model counting up to three-way
interactions.
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Figure 1. Relative variable importance in MART-fitted model A (left) and B (right). The straight lines
show the 95 per cent confidence intervals of the importance measures.

Figure 1 shows the relative variable importance in MART-fitted models in Models A (left) and
B (right), which consist of 4780 and 4519 individual trees, respectively. Note that the relative
variable importance measures are based on the number of times a variable is selected for splitting,
weighted by the squared improvement to the model as a result of each split, and then averaged over
all the trees (see Section 3.4). In Figure 1, we see that compared with other covariates in the model,
the variable ‘poverty’ is the most important variable in predicting assault rates in both models.
From the left panel of Figure 1, we find that alcohol availability (‘totaldensity’) is a relatively
important variable, ranked fifth in the model, more important than the proportion of young males,
the proportion of Asians and Hispanics and the damage level in the Civil Unrest. The percentages
of on-premise or off-premise licenses surrendered in the civil unrest are relatively unimportant in
the model. That is, we do not find important influence from a sudden drop in alcohol outlet density
on the assaultive violence. When we consider the effect of on-premise and off-premise alcohol
availabilities separately in model B, we find on-premise alcohol outlet density is a little bit more
important than the off-premise outlet density (the right panel of Figure 1) in explaining the assault
rates. But the difference is not significant by the overlap of confidence intervals of the importance
measures of the two variables.

After establishing the relative importance of the explanatory variables, the nature of the depen-
dence in the fitted model on any subset of explanatory variables is of interest. The partial
dependence function can help us to graphically examine the dependence of a fitted model on a small
subset of the variables. Figure 2 based on model A shows the partial dependence plots for the six
most important variables. We establish the positive relationship between alcohol outlet density and
assault rates in the Los Angeles area over the years 1990–1999: higher total alcohol outlet density
is associated with higher assault rates. Also census tracts with relatively more blacks as well as
poorer tracts tend to have a higher assaultive risk. The assault rates decrease with the percentages
of young males in the tract and then increase a little (the partial dependence reaches the minimum
when the percentage of young males is between 0.056 and 0.156) before stabilizing. Furthermore,
the assault rates decreased over the years from 1990 to 1999 with a steeper decrease after 1993
(1 year after the civil unrest). The steeper decrease in assault rates lasted until the year 1998. This
finding matches that from [9], where they obtain the results by model selection. Based on Figure 2,
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Figure 2. Partial dependence plots in MART-fitted model A. Dotted lines are the 95 per cent confidence
intervals for the partial dependence.

detailed inference on how covariates are related with the assault rates could be drawn from the
partial dependence of each covariates and their confidence intervals.

Figure 3 shows the two-dimensional partial dependence plot for poverty and onsale in the
MART-fitted model B. We see that both poverty and onsale variables act positively on the response
with no obvious interaction pattern. Friedman and Popescu [28] developed techniques that allow us
to test the total interaction strength for each input variable. The procedure is essentially a variant of
a permutation test. For details of the test procedure, we refer the readers to Section 8 in [28]. The
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Figure 3. Two-dimensional partial dependence plot of poverty and onsale in MART-fitted model B.

procedure is applied to the fitted MART models A and B. We find that no significant interaction
effect was observed for all the predictor variables.

4.2. The spatial correlations

In this section, all analyses are based on the MART-fitted model A. To check the spatial hetero-
geneity explained by our models, Table I shows the Morans’ I, the index of spatial correlation, of
the original log assault rate, the residuals after fitting with covariates, and the residuals after both
spatial smoothing and covariate fitting over the 10 years. Note that after MART fitting with covari-
ates, the remaining residuals in the years 1991 and 1996 have no significant spatial correlation, so
the observations in those 2 years are not used in the second stage to fit the spatial errors. After
the second stage of spatial smoothing, we find that most spatial correlations are explained by the
hierarchical additive model. There are still spatial correlations remaining for the years 1990, 1992,
and 1999, but the spatial correlation becomes negative. It seems that in these years, the spatial
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Table I. Moran’s I and P-values of Spatial Correlation Testing: the ‘Origin’ column is the Moran’s I of
the original log assault rate; ‘Res1’ is the Moran’s I of the remaining residuals after the covariates fitting,
yi − f (xi ); and ‘Res2’ is the Moran’s I of the remained residuals after the two-stage fitting, yi −�i .

Year Origin P-value Res1 P-value Res2 P-value

1999 0.46 <0.0001 0.13 1.23e−04 −0.09 0.017
1998 0.52 <0.0001 0.29 0.00e−00 −0.04 0.277
1997 0.50 <0.0001 0.25 1.46e−12 −0.02 0.688
1996 0.29 <0.0001 0.05 4.78e−02 0.05 0.048
1995 0.49 <0.0001 0.23 2.35e−11 −0.01 0.484
1994 0.49 <0.0001 0.24 4.98e−12 −0.04 0.335
1993 0.52 <0.0001 0.21 4.83e−09 −0.01 0.825
1992 0.30 <0.0001 0.14 1.77e−07 −0.16 0.000
1991 0.18 <0.0001 0.02 4.43e−01 0.02 0.443
1990 0.44 <0.0001 0.16 1.26e−06 −0.11 0.001

The P-values of the spatial correlation tests are shown in the right column to the corresponding Moran’s I.

associations are overfitted. Note that these years are the years when the p-values of spatial tests
are relatively large after fitting covariates, meaning there is less spatial correlation in the residuals.
Also note that the year 1992 is when the civil unrest occurred.

Figure 4 maps the fitted assault rates in the civil unrest area in 1998. The upper panels sepa-
rately map the fitted log assault rates using the hierarchical additive models, f (xi )+�Ti ,Ci

as
in model 2, and those fitted through MART, f (xi ), only. The left upper panel reveals a higher
level of assault rates in the middle to east areas, which comprise downtown LA and its imme-
diate neighborhoods. The lower panels of Figure 4 present map residuals. The left panel is the
fitted spatial error (�1998,Ci

) and the right panel is the random residuals after all the model
fitting, i.e. the raw log assault rate, yi , minus the log-fitted assault rate, �i , at each census tract
in 1998. We see that no obvious spatial correlations remain in the residuals after the two-stage
analysis. The remaining spatial correlation in the residuals after the fitting of covariates using
MART suggests the presence of unmeasured spatially varying covariates. One obvious candidate
here would be the distance of each tract from the origin of the civil unrest (the intersection of
Florence and Normandy). Additional possible factors are more social in nature, and are related
to the fact that the southern region of the civil unrest area tends to be the most disadvan-
taged in the city. While measure of social economic status and ethnicity are already included in
the model, other factors associated with concentrated disadvantage (i.e. family structure, ethnic
isolation, low social capital) were not included and may contribute to the observed pattern.
The maps from other years can also be drawn and analyzed to figure out the possible missing
variables.

4.3. Comparison of methods

Yu et al. [9] analyzed the same data set using hierarchical linear regression models, with assumed
linear effects on transformed variables and possible interactions. The spatial errors were also
modeled using the CAR strategy in their paper. In their analysis, several models were compared,
with the best model chosen in terms of Deviance Information Criterion (DIC) [29]. Here we
compare their Bayesian hierarchical linear model with our hierarchical additive model in terms of
the efficiency of explaining the spatial correlations and model explanation.
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Figure 4. Maps of log assault rates on fitted data. The left upper map is the two-stage-fitted
assault rate in 1998 and the right upper panel maps the MART-fitted log assault rates. The
left lower panel maps the fitted spatial error and the right lower panel shows the random

residuals after taking out the spatial errors.
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Table II. Moran’s I and P-values of spatial correlation testing for the residuals
from the hierarchical linear model.

Year 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990

Moran’s I 0.14 0.24 0.18 0.04 0.13 0.20 0.17 0.11 0.02 0.16
P-value 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.39 0.00

Moran’s I is used to test the spatial correlation. Moran’s I and the test p-value of the residuals
after model fitting with the hierarchical linear model are shown in Table II, which should be
compared with the last two columns of Table I. We see that there are still spatial correlations
remaining in the residuals of the hierarchical linear regression. The hierarchical additive model
does a better job in explaining the spatial correlations in this data set.

We also notice that the pD, explained as the effective number of model parameters [29], from
the hierarchical linear model is 2356, while that from the hierarchical additive model is only 873.
Both pDs account for the local shrinkage of the spatial random effects only. This means that
most variances in the assault rates are explained by the spatial errors in the linear model, while
covariates more efficiently explain the assault rates in the hierarchical additive model.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a hierarchical additive model strategy—using nonparametric method
to look for relationships among the variables and utilizing a CAR model to address the spatial
heterogeneity. We use this strategy to explore the relationship between the alcohol outlet
density and the assault rates. We have demonstrated that the total alcohol outlet density is
positively related to the assault rate over the study period. Decreasing alcohol outlet density was
associated with decreasing assault rates. We capitalized on a natural experiment by the 1992
Los Angeles civil unrest, but did not find important consequences for the alcohol license surrenders
on the assault rates when alcohol outlet density measures were included in the model. Maps were
presented to show the distribution of the fitted assault rates, as well as residual maps to suggest
possible missing covariates. Our method has been compared with the hierarchical linear model and
showed superior performance in exploring important variables that explain the change in the assault
rates.

As mentioned above, many other variables could have been included in our model and some
lagged effect for coefficients could also be used to smooth the remaining spatial correlations. In
addition, it might be of greater interest to model other types of assaultive violences with assault
simultaneously. Our future research might include multivariate models to analyze different alcohol-
related violences such as assault, homicide, rape, and robbery together. A possible solution is to
use MART to explore the relationships between the different assaultive violence outcomes and the
covariates separately and then use the multivariate intrinsic Gaussian CAR hyper-distribution on
the random effect vector of different types of assaultive violence outcomes to explore the resulting
residuals together. This could be easily realized through the ‘mv.car’ function in Winbugs. A final
area of interest is to study the association between the alcohol outlet and mortality rates in the
study region using the hierarchical additive model.
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