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Bayesian model averaging enables one to combine the disparate predic-
tions of a number of models in a coherent fashion, leading to superior pre-
dictive performance. The improvement in performance arises from averaging
models that make different predictions. In this work, we tap into perhaps the
biggest driver of different predictions—different analysts—in order to gain
the full benefits of model averaging. In a standard implementation of our
method, several data analysts work independently on portions of a data set,
eliciting separate models which are eventually updated and combined through
a specific weighting method. We call this modeling procedure Bayesian
Synthesis. The methodology helps to alleviate concerns about the sizable
gap between the foundational underpinnings of the Bayesian paradigm and
the practice of Bayesian statistics. In experimental work we show that hu-
man modeling has predictive performance superior to that of many auto-
matic modeling techniques, including AIC, BIC, Smoothing Splines, CART,
Bagged CART, Bayes CART, BMA and LARS, and only slightly inferior to
that of BART. We also show that Bayesian Synthesis further improves predic-
tive performance. Additionally, we examine the predictive performance of a
simple average across analysts, which we dub Convex Synthesis, and find that
it also produces an improvement. Compared to competing modeling methods
(including single human analysis), the data-splitting approach has these ad-
ditional benefits: (1) it exhibits superior predictive performance for real data
sets; (2) it makes more efficient use of human knowledge; (3) it avoids mul-
tiple uses of the data in the Bayesian framework: and (4) it provides better
calibrated assessment of predictive accuracy.

1. Introduction. A coarse but conceptually useful taxonomy of modeling
strategies distinguishes between two broad categories: automatic strategies and
strategies which require human intervention. Automatic strategies typically rely
on generic methods for model selection, perhaps allowing data-based choice of
a couple of tuning parameters. They are appealing because, once the data are in-
put, inferences are produced without requiring any further human interaction. By
contrast, human modeling emphasizes exploratory data analysis and the accompa-
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nying notions of model development and refinement. The debate on the relative
merits of these two approaches is vigorous and ongoing [see, e.g., Breiman (2001)
or Hand (2006), and the ensuing comments and rejoinders].

In our experience, much of data analysis is heavily based on subjective decisions
which do not lend themselves to routine formulations. These range from what vari-
ables to include in an analysis to what forms the variables should take, to insight
about the parametric form of the response variable, to whether individual cases
should be included in the analysis or trimmed as outliers. Many common instances
of human interventions in the modeling cannot be easily carried out by automatic
procedures.

Throughout, an adequate analysis must take into account what the variables are,
whether they are well measured or of lesser quality, whether individual influen-
tial cases drive the results, what the scientific background of the problem is, etc.
[Weisberg (1985)]. All of these elements are essential, both when modeling the
data formally and when drawing conclusions from the analysis. Also, in certain
cases, we might specify some aspects of a model and impose specific constraints
based on scientific knowledge that a general purpose model selection method may
fail to recognize.

Because of these reasons, we strongly adhere to the belief that a good data
analysis based on human intervention will often be far superior to a routinely im-
plemented analysis. In this article we present a modeling and weighting strategy,
called Bayesian Synthesis, for combining analyses from several human modelers
within the Bayesian framework. Bayesian Synthesis, formalized in Section 2, re-
lies on a number of different analysts each contributing a Bayesian model to a
pool of models. Each model in the pool is given a weight, thus creating a “hyper-
model.” The techniques of model averaging [e.g., Raftery, Madigan and Hoeting
(1997)] are used to synthesize the different analysts’ beliefs. Formal rules ensure
that the analysts will contribute models that can be synthesized. Bayesian Synthe-
sis retains the benefits of subjective modeling while substantially enhancing the
inferential and predictive strengths of each individual analysis, producing com-
bined inferences that vastly outperform inferences based on automatic methods.

The methodology we propose can be viewed as a means of constructing a use-
ful space of models over which to perform a Bayesian analysis. In this regard, it is
strongly connected to the literature on model selection [e.g., George and McCul-
loch (1993), who describe a method of screening models for further development]
and on accounting for model uncertainty [see Draper (1995) and the following
discussion for an extensive treatment]. In contrast to earlier work, our approach
emphasizes the role of subjective modeling and the need for multiple analysts.

In this article we report on the experimental development of the new method-
ology. Specifically, we have constructed a careful experiment (with appropri-
ate randomization and blinding) that allows us to contrast subjective modeling,
and subjective modeling combined with Bayesian Synthesis and Convex Synthe-
sis, to automated modeling methods. The results demonstrate the success of our
new methods: With only the exception of BART [Chipman, George and McCul-
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loch (2010)], subjective, human modeling had predictive performance superior
to that of a variety of automatic methods, including AIC [Akaike (1974)], BIC
[Schwarz (1978)], Smoothing Splines [Craven and Wahba (1979); Gu (2002)],
CART [Breiman et al. (1984)], a bagged version of CART [Breiman (1996)],
LASSO [Tibshirani (1996)], Forward Stagewise [Hastie, Tibshirani and Friedman
(2001)], LARS [Efron et al. (2004)], Bayesian Model Averaging [Raftery, Madi-
gan and Hoeting (1997)] and Bayesian CART [Chipman, George and McCulloch
(1998)]. The gains relative to these methods were large. The comparisons with
BART give a slight advantage to BART, but not uniformly so. Bayesian Synthesis
and Convex Synthesis provide an additional, modest improvement over subjec-
tive modeling. In addition, and much more importantly, it leads to a more realistic
assessment of predictive accuracy, curbing the over-optimism of each individual
analyst.

In Section 2 we introduce a Bayesian framework for data splitting and formally
describe Bayesian Synthesis and Convex Synthesis. In Section 3 we present the
experiment and a careful discussion of the results. In Section 4 we discuss related
work and suggest directions for future research.

2. A Bayesian framework for data-splitting. Our primary focus is on
Bayesian modeling, where a team of analysts builds models for a data set. The
paradigm we envision is this. First, the data are split into several portions. Each
analyst receives one portion of the data. Second, each analyst builds a Bayesian
model for their portion of the data, reporting a “Bayesian summary” of their poste-
rior distribution. Third, the Bayesian summaries are updated on portions of the data
not used to build them, and they are combined to yield a single, overall posterior
model.

Two features are essential for this procedure to work well. First, each analyst
must produce a Bayesian summary that is amenable to updating with further data.
Second, the various Bayesian summaries must be amenable to synthesis. Through-
out, we must exercise care so that the data are not split into too many parts. We
will assume that there are k analysts.

2.1. Splitting the data. The data to be used for model development and syn-
thesis are split into k portions. Once split, the portions of the data are assigned
to the k analysts at random. This produces an exchangeable partition and assign-
ment of data to analysts. Theoretical results presented in Yu (2006) suggest that
(where data splitting is appropriate) the portions of the data should all contain
approximately the same amount of information about the data-generating process.
Following this theory, we seek to produce a set of splits that give conditionally i.i.d.
data to the analysts. The following cases describe two of the splitting procedures
that we have implemented.

The first case is that of a designed experiment where a structural balance is
forced upon the data. For example, the two-sample, completely randomized de-
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sign is often implemented in a balanced fashion, so that the same number of exper-
imental units are assigned to each of the two treatment conditions. Additionally,
covariates are recorded on the experimental units. For this type of experiment, we
split at random, with the restriction that each analyst receive the same number of
observations on each treatment. The additional covariates need not be balanced
and need not be used by the analysts in constructing a model for the data.

The second case, matching the ozone example of Section 3, is one where there
is a collection of experimental units, with a variety of information on each unit. In
this case, we split the data at random, with each analyst receiving the same number
of observations.

These methods of splitting the data have the advantage of not depending on the
analysts’ eventual models—an essential part of our paradigm. The methods are
extremely easy to implement and do not require the help of an expert to split the
data. The drawback to these methods is that the portions of the data will typically
not convey the same amount of information to the different analysts. While “opti-
mal” splits might well differ, we would need to know the details of the analysts’
models to formalize the notions of information in the splits and of optimality. For
large samples, the splits of the data will contain approximately the same amount
of information.

2.2. Building and updating the model. In order to carry out the analysis, each
analyst is provided with a set of ground rules for model building. The rules include,
most importantly, the goals of the modeling task. Second, the analyst must know
what kind of Bayesian summary to produce. Since the Bayesian synthesis of the
analysts’ summaries will be accomplished through Bayes factors, and since Bayes
factors depend on the marginal likelihood of the data, the analyst must be informed
of the quantity for which the likelihood will be calculated. Third, the analyst must
know what conventions will be followed for computation of the likelihood. These
conventions must guarantee that the analysts’ models will be mutually absolutely
continuous over the range of values that the data can assume.

Consider the prototypical experiments for which data splitting is described. In
the first case, of a balanced two-sample experiment with case-specific covariates,
interest may focus on the difference between treatment means. Implicitly, the an-
alysts have been informed that the treatment means exist. The Bayesian summary
for an analyst represents the analyst’s posterior, given the portion of the data used
for the analysis. The likelihood of responses to the two treatments will be com-
puted; the mechanism assigning units to the treatments will not be part of the like-
lihood. The convention for the likelihood is that it be a density absolutely contin-
uous with respect to Lebesgue measure with support on the real line. An alternate
convention might be that the likelihood be discrete, rounded to a single decimal
place, on the nonnegative half-line.

An instance of the second case is described in some detail in the upcoming
example, and so we leave off discussion for the moment. In any event, each analyst
is left with the choice of constructing a model from the assigned portion of the data.
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The analysts may use any method whatsoever to build their model, ranging from
automated methods, to subjectively elicited priors, to construction and refinement
of models through diagnostics. The essence of the paradigm is to encourage the
analysts to build creative models that can be combined across analysts.

2.3. The Bayesian summary. The Bayesian summary can take on a wide vari-
ety of forms, depending on the analyst’s modeling choices. Whatever the form, the
summary must be amenable to updating and allow one to compute the marginal
likelihood for the portions of the data not used to construct the model.

Several forms of summary work well in practice. Choice of a posterior distribu-
tion conjugate to the analyst’s chosen likelihood for the future data leads to a direct
computation of the marginal likelihood. Choice of a mixture of such distributions
leads to a mixture of conjugate posteriors, and hence to quick computation of the
marginal likelihood. For models that move beyond conjugacy, the posterior dis-
tribution can be represented in a discrete fashion, for example, by the output of a
Monte Carlo simulation. Along with the representation, the summary must include
a means of updating the summary, for example, code to compute the marginal like-
lihoods and to produce summaries that enable one to address the inferential goals
of the analysis.

2.4. Synthesizing the analyses. When each analyst has produced a model, we
can combine them to yield an overall model. Under Bayesian Synthesis, we com-
bine the models by computing pairwise Bayes factors for portions of the data
and then reconciling them through the calculation of the geometric mean of pair-
wise Bayes factors for each analyst. These geometric means determine the weight
that each analyst receives in predictions. A formal justification for this choice of
weighting is provided in Sections 2.5 and 2.6.

Let Y1, . . . , Yk denote the k splits of the data; let f1, . . . , fk denote the likeli-
hoods for the k models with possibly differing parameters θ1, . . . , θk . The pairwise
Bayes factor is computed on the greatest set of data not used in constructing the
two models, after the two models have been updated to include the same data.
Thus, the Bayes factor comparing analysts 1 and 2 is

B12 =
∫

f1(Y3, Y4, . . . , Yk|θ1)π(θ1|Y1, Y2) dθ1∫
f2(Y3, Y4, . . . , Yk|θ2)π(θ2|Y1, Y2) dθ2

= m1(2)

m2(1)

.

Note that the distribution on θ1 used in the above calculation is the posterior, given
both Y1 and Y2. Similarly, the distribution on θ2 is the posterior given both Y1 and
Y2.

If the Bayesian summaries yield models that are each well represented by a set
of N draws from the appropriate posterior distribution, the Bayes factor can be
estimated as

B̂12 =
∑N

j=1 N−1f1(Y3, Y4, . . . , Yk|θ (j)
1 )∑N

j=1 N−1f2(Y3, Y4, . . . , Yk|θ (j)
2 )

.
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Weighted distributions, such as those produced by importance sampling, can be
used to obtain the Bayes factor. For more complex models, sophisticated meth-
ods of estimating the marginal likelihoods produce these Bayes factors. See Chen
et al. (2000) for a recent book that describes methods for estimating Bayes fac-
tors/marginal likelihoods.

Next, for each i, we compute the geometric mean of the estimated Bayes factors
to obtain

bi =
[

k∏
l=1

B̂il

]1/k

,(1)

where B̂ii ≡ 1. These bi are then used as weights to yield the synthesized posterior:
f (θ |Y) = ∑k

i=1 bif (θ i |Y1, . . . , Yk)/
∑k

j=1 bj . In this expression, θ runs over the
parameter spaces for all of the analysts’ models.

2.5. Model weights: A formal justification. Forecasts are naturally combined
through the marginal likelihood. In the context of model averaging performed by a
single analyst, this follows from Bayes theorem: assuming that equal prior weight
is assigned to each submodel under consideration, the posterior weight for a sub-
model is then proportional to the Bayes factor for that submodel against an arbi-
trary reference submodel. Thus, the ratio of the weights assigned to two submodels
equals the Bayes factor for one against the other, and the Bayes factor expresses
the impact that the data have on the relative weights assigned to two submodels.

The approach that we have taken extends the result for a single analyst to more
than one analyst. When there are two analysts, each plays the role of a submodel,
and from the definition of equation (1), we have

b1

b2
= (B̂11B̂12)

1/2

(B̂21B̂22)1/2
= (B̂12)

1/2(B̂12)
1/2 = B̂12.

The formula for the bi given in equation (1) does appear to be unusual, but it
produces the answer we had hoped for: the ratio of the weights equals the Bayes
factor. This formula for two analysts is used in the analysis of the ozone data
presented in Section 3.

When there are more than two analysts, we can imagine that each analyst plays
the role of a submodel. We seek to assign weights to the various analysts (submod-
els). In the event that all pairwise Bayes factors were consistent with one another
(i.e., if B̂ij = B̂ilB̂lj for all i, j, l = 1, . . . , k), we would wish to assign relative
weights according to Bayes theorem. That is, we would wish to have

bi

bj

= B̂ij

for all i, j = 1, . . . , k. Our expression for the bi does just this. In fact, making use
of equation (1) and of the consistency of the Bayes factors with one another, we
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have

bi

bj

=
[

k∏
l=1

B̂il

B̂j l

]1/k

=
[

k∏
l=1

B̂ilB̂lj

]1/k

=
[

k∏
l=1

B̂ij

]1/k

= B̂ij .

2.6. Model weights: Uniqueness. There is a sense in which our definition of
equation (1) is uniquely the “correct” means of combining information across the
analysts in a broad class of versions of the problem. We first restrict consideration
to expressions for bi which satisfy

log(bi) =
k∑

l=1

(
c + d log(B̂il)

)
for some choice of real-valued coefficients, c and d . This restriction enforces lin-
earity of the log(bi) in the log Bayes factors (which, in turn, are derived from
log marginal likelihoods). The restriction also ensures that common coefficients (c
and d) are assigned, irrespective of subscripts i and l. This is appropriate because,
in our splits, we assign the same amount of data to each analyst, and so the same
amount of data is used to compute the log marginal likelihoods for each of the pair-
wise Bayes factors. Second, to satisfy our desired property, we enforce the fixed
solution log(bi/bj ) = log(B̂ij ) when the Bayes factors are consistent with one an-
other. Letting Lij = log(B̂ij ), we then have a chain of algebraic expressions, to
wit,

log(bi/bj ) =
k∑

l=1

[c + dLil] −
k∑

l=1

[c + dLjl] = d

[
k∑

l=1

Lil −
k∑

l=1

Ljl

]

= d

k∑
l=1

[Lil + Llj ] = d

k∑
l=1

Lij .

This yields the log Bayes factor comparing analyst i to analyst j only when d =
1/k, resulting in our definition of bi (up to a multiplicative constant that drops out
when deriving the relative weights for the analysts).

2.7. Alternative weights. The analysts’ summaries can be combined in many
fashions, including those not motivated by Bayes theorem. A simple method of this
form takes a convex combination of the analysts’ summaries, but does not update
the weights. We call this method Convex Synthesis.

3. Applications. In this section we describe an experiment which demon-
strates the benefits of Bayesian Synthesis and Convex Synthesis. To conduct the
experiment, we selected a data set which has been used by other authors to illus-
trate the benefits of automated modeling methods. None of us was familiar with the
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data set and we each received one third of the data. This allowed us to create three
pairs of analysts, with one third of the data reserved for evaluation of the pair’s
synthesis. The syntheses were compared to a variety of automated procedures. We
found that both Bayesian Synthesis and Convex Synthesis perform well.

3.1. Ozone data. The ozone data set consists of daily measurements of ozone
concentration and eight meteorological quantities in the Los Angeles basin for
330 days in the year 1976. Breiman (2001) describes the origin of the data set.
The data set is contained and documented in the software package R. The data
frame contains 330 observations on the following variables: upo3—maximum 1-
hour average upland ozone concentration, in ppm;1 vdht—Vandenberg 500 mil-
libar height, in meters; wdsp—wind speed, in miles per hour; hmdt—humidity;
sbtp—Sandburg air base temperature, in degrees Celsius; ibht—inversion base
height, in feet; dgpg—Daggett pressure gradient, in mmHg; ibtp—inversion base
temperature, in degrees Fahrenheit; vsty—visibility, in miles; day—calendar day,
an integer number between 1 and 366.

Each analyst was charged with the task of constructing a Bayesian model that
can be used to predict ozone concentration. Each model should produce a distrib-
ution for ozone concentration supported on the nonnegative integers.

3.1.1. The split-data analysis. We split the data into three sets of 110 observa-
tions each, with a complete randomization. Each of us (Analysts 1–3) received one
part of the data (data 1–3). All three analysts decided independently to model log
ozone level as a continuous variable and to produce the agreed-upon distribution
for ozone (over the positive integers) by integrating the continuous density of the
modeled variable.

Model 1. Analyst 1 used data set 1 to build a model, pursuing a strategy of first
discovering which variables appeared to be important in predicting ozone level and
then determining the forms in which the variables should enter the model.

Matrices of scatter plots of the response variable and explanatory variables were
examined. Serial dependence was investigated by including lagged responses as
explanatory variables. Several variables (sbtp, ibht, vsty and day) appeared to be
quite important, and so were chosen to appear in the models. There was no appar-
ent serial dependence in the data, after adjusting for other variables.

Having identified important variables, the analyst searched for appropriate
forms. The term ibht was modeled as four variables, a linear term, two further
variables developed to capture nonlinearity, and an indicator for ibht = 5000, an
apparent truncation point for the variable. The indicator allows for the jump that

1Investigation of ozone standards suggests that the units for upo3 are actually parts per hundred
million rather than ppm. See, for example, the US EPA standards for ground level ozone to which
we return in Section 3.1.2 (http://www.epa.gov/ozonepollution/history.html).

http://www.epa.gov/ozonepollution/history.html
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we expect at the truncation point and provides a way to incorporate additional vari-
ability at this point. The analyst used a sine curve for the effect of variable day to
force it to be periodic with period 1 year.

After basic models were created, the analyst reexamined variables previously
judged to be of lesser import with added variable plots and best subsets regres-
sions. The variable hmdt was included as a predictor, in a piecewise linear fashion.
The variables dgpg (with linear and quadratic terms) and vdht were considered to
be potential predictors. Plots of vsty showed a wiggly pattern of nonlinearity. Two
forms for this effect were considered—a linear effect and a Gaussian process cen-
tered at a linear effect. The prior on the Gaussian process version was chosen to
force the realized effect curve to be close to linear.

Finally, eight models (all including the initial variables and hmdt; then the 23

combinations including or excluding dgpg and vdht and with two forms of prior for
vsty) were selected to receive positive probability. The prior distribution on each
model was improper, uniform for some coefficients and vague for most other coef-
ficients. Weights were formed for the eight models through estimated likelihoods.
Each model was updated with 99 cases and a predictive likelihood computed for
the remaining 11 cases. This process was repeated 10 times, yielding ten predic-
tive likelihoods. The weight given to each model was proportional to the geometric
mean of its predictive likelihoods.

Model 2. Based on data set 2, Analyst 2 plotted log ozone concentration and
all other covariates against “day” to detect evident trends. The response and the
covariates were each detrended through local fitting [by means of the loess()
function in R] using the variable “day” as a predictor. All subsequent modeling
was conducted on the residuals from these fits.

Analyst 2 believed that time proximity might constitute an important fac-
tor and decided to specify conditional autoregressive (CAR) models for the de-
trended data. Denoting the response variable by Y , a CAR model takes the form
Yt ∼ Normal(μt , σ

2), where μt = X′
tβ + θ t , with Xt denoting a vector of covari-

ate values at time t and β a vector of model parameters. The models specified
random walk priors of order either one or two for the vector θ = (θ1, . . . , θ366)

′, as
explained in Thomas et al. (2004).

Analyst 2 built two models for the regression X′
tβ . The first has an intercept

and four main effects selected by means of graphical and exploratory data analy-
sis techniques. The second has many more predictors selected through a stepwise
procedure, starting from the model with all main effects and two-way interactions.
The two regression models and the two CAR structures were combined to produce
four models that were averaged according to weights given in Table 1. The weights
were chosen subjectively to reflect the analyst’s higher degree of confidence in sim-
pler rather than more complicated models. Noninformative priors were specified
for the model parameters and Winbugs was used to draw separate samples from
the posterior distributions for the four models.
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TABLE 1
Weights for Analyst 2’s four component models, given data set 2. The
four component models of the mixture model produced by Analyst 2

result from all possible combinations of two regression models
(rows) and two CAR error structures (columns)

CAR 1 CAR 2

Main effects 0.4 0.3
Main effects plus interactions 0.2 0.1

Model 3. Analyst 3 used data set 3 and applied a modification of Least Angle
Regression [LARS; Efron et al. (2004)] to fit the model: first modified LARS was
used to choose the variables to be included in the model, and then Bayesian lin-
ear regression was implemented to quantify the relationship between log ozone
concentration and the selected variables.

Two modifications are applied to LARS. The first is the restriction that an inter-
action term can be selected only after the corresponding main effects have entered
the model. As soon as the main effects enter, the interaction term becomes a can-
didate variable. The second modification to LARS is that some variables (in this
analysis, one main effect) are forced to enter the model at the beginning of the
procedure.

Assume there are p candidate main effects. Order these variables by the strength
of their correlation with the response variable, from strongest to weakest. Label the
ordered variables 1, . . . , p. Suppose that variable 2 will be forced into the model.
We start with only variables 2 through p as candidate variables, and so LARS
selects variable 2. We continue with the solution path until another variable is
added. At this point, the list of candidate variables is expanded to include variable
1 and the second-order term for variable 2. A second variable is chosen from the
list of candidate variables according to the LARS criterion. Then the second-order
term for this variable and its interaction with variable 2 are included as candidate
variables. The above process is repeated until the solution path is completed.

Analyst 3 used modified LARS to decide, with different forced-in variables, the
order in which variables entered the models. This produced several sequences of
models. Each sequence was examined by Cp and by differences in AIC and BIC
to subjectively determine which models were viable. A Bayesian linear regression
was computed for each viable model, against an improper prior distribution. Fi-
nally, BIC was used to obtain a weight for each of the four models. With new
data, both the weight for each model and the distributions of parameters within the
model were updated.

3.1.2. Human modeling versus automated modeling. Many authors have ad-
vocated the use of automated modeling strategies, arguing that such methods pro-
vide better predictive performance than corresponding subjectively built models.
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Breiman et al. (1984) and Gu (2002) analyze the ozone data with the goal of pre-
dicting log ozone concentration. Using the methods described in their work as well
as a number of other methods, we reanalyzed the data, comparing their predictive
performance to that of the single and combined models of Analysts 1–3.

The suite of automated methods used for comparison was chosen to span the
variety of strategies that are currently in vogue. These strategies range from rigid
strategies which select a model from a small set of potential models and that may
suffer from bias to flexible strategies that allow an essentially arbitrary mean func-
tion and that may overfit the data. They include both strategies that rely on a single
fit to the observed data (as in model selection) and strategies that incorporate model
averaging (whether different models are fit to the single data set, or whether mod-
els are derived from a collection of data sets produced from the actual data set).
The methods include both classical and Bayesian methods. Publicly available soft-
ware routines were used to implement all of the automated methods. In general,
default values were used for parameter settings, except for the case of smoothing
splines where variables were selected using the method described in Gu (2002).
Specifically, the methods investigated are those described at the end of the Intro-
duction.

The methods were compared on a range of goals, including those that would
naturally favor the automated analyses and those which we expect to be difficult
for the automated methods. We now step through a brief description of the results
of the comparisons.

Table 2 compares the methods in terms of prediction of log ozone. Recall that
previous analyses of these data have focused on log ozone, and all three of the an-
alysts also selected a log transformation of ozone before analyzing the data. With
this transformation, a (discretized) normal likelihood appears to be appropriate for
analysis of the data. Thus, accuracy of predictions as measured by sum of squared
prediction errors provides both a measure of the discrepancy between the predic-
tions and the observed data and it is directly tied to likelihood-based assessment of
the models’ lack of fit.

The table contains six comparisons. For each comparison, one split of the data
is reserved as test data, with the other two splits used to fit the models. In addi-
tion, two versions of the prediction problem were investigated. The first is a static
prediction problem, the latter a sequential prediction problem. For the static prob-
lem, the training data were used to develop the model. A prediction was made for
each case in the test data, and the measure of fit was computed. We refer to this
as making a prediction “once and for all.” For the sequential problem, we ran-
domly partitioned the test data into 11 sets of 10 cases each. The model was fit to
the training data, and a prediction made for the first set of cases in the test data.
The model was updated (getting the posterior distributions both within and across
models) based on the first set of cases in the test data, and predictions made for the
second set of cases. This procedure was continued, updating the model on succes-
sively larger sets of data and making predictions for the next set of cases, until the
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TABLE 2
Comparison of Automatically Fitted Models with Human Models by Sum of Squared Errors for Log

Ozone. The row labels in upper case indicate the modeling method under consideration. The
column labels Data set 1, 2 and 3 indicate which third of the data was used as the test data (with the

other two thirds having been used for model building). The subcolumn labels Once and 10/10
indicate the type of prediction problem under consideration

Test data

Data set 1 Data set 2 Data set 3

Updating method Once 10/10 Once 10/10 Once 10/10

ANALYST 1 – – 12.31 12.43 14.65 14.03
ANALYST 2 17.96 17.59 – – 15.66 15.78
ANALYST 3 15.96 16.07 14.21 14.32 – –

MN. HMN. PR. ERR. 16.96 16.83 13.26 13.38 15.15 14.91
BAYES SYNTH. 15.98 16.29 11.93 11.98 13.39 14.32
CONVEX SYNTH. 15.98 15.81 11.93 12.08 13.39 13.27

CART 27.51 21.29 17.87 18.72 19.37 17.81
BAYES TREE 28.56 25.39 22.12 19.76 20.04 21.39
BAGGED CART 19.66 19.02 14.91 14.22 16.32 15.64
BART 13.10 12.31 11.40 11.06 13.21 12.87
SS 19.75 20.15 17.21 17.23 17.63 15.27
LARS 21.33 21.55 17.36 19.17 19.40 28.50
LASSO 21.37 21.76 16.76 19.12 20.50 28.64
FWD STGW 21.12 21.11 17.20 19.44 20.50 28.28
BMA 21.96 21.89 17.61 17.67 16.90 16.31
AIC 20.84 19.88 16.91 16.29 16.75 15.76
BIC 21.51 20.78 17.47 16.90 16.75 15.76

Note that, to improve readability, this table summarizes sum of squared errors, while Table 3 sum-
marizes mean squared errors.

test data were exhausted. We used the same partition of the test data (in the same
order) to evaluate each of the methods. We refer to this as “ten by ten” evaluation.

Table 2 contains rows for the “Mean Human Prediction Error,” for “Bayesian
Synthesis” and for “Convex Synthesis.” The Mean Human Prediction Error is de-
fined by selecting an analyst at random to make predictions. The measure of fit
is the mean of the two analysts’ measures. Bayesian Synthesis implements the
method of Section 2, combining the two analysts eligible to make predictions for
the test data. The initial weights given to each analyst are equal to 1/2. When
updating ten by ten, the weights adjust, based on the relative performance of the
analysts’ models. The predictions were taken to be the posterior predictive means.
Convex Synthesis uses the same procedure as Bayesian Synthesis, but maintains
a constant weight of 1/2 for each analyst. Because the initial weights are equal to
1/2 for both Bayesian and Convex Syntheses, the once and for all updating yields
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the same results in both cases. For the 10 by 10 updating the final weights under
Bayesian Synthesis are 0.019 for Analyst 2 and 0.981 for Analyst 3 when predict-
ing data set 1, 1.000 for Analyst 1 and 0.000 for Analyst 3 when predicting data
set 2, and 0.990 for Analyst 1 and 0.010 for Analyst 2 when predicting data set 3.

Table 2 shows the success of data splitting and of human modeling. We first
note that the Mean Human Prediction Error provides a better predictive fit than do
any of the classical automated methods. Mean human prediction error corresponds
to randomly selecting an analyst to develop a model. This comparison establishes
the benefit of subjective modeling.

Second, we turn to the main purpose of the experiment—to see whether
Bayesian Synthesis outperforms rival methods. In every instance (excepting
BART), we find that the method does outperform competing procedures. Bayesian
Synthesis and Convex Synthesis yield much smaller predictive mean square errors
than do any of the automated methods. The predictive mean square error is also
smaller than the Mean Human Prediction Error. Bayesian Synthesis and Convex
Synthesis outperform both human analysts in five of the six comparisons and is vir-
tually as accurate as the better analyst in the remaining one. The comparisons also
show the magnitude of the benefit to human modeling. The differences between
the bulk of the automated techniques are considerably smaller than the differences
between these automated techniques and the syntheses. As noted above, Convex
Synthesis and Bayesian Synthesis are identical for “Once”; Convex Synthesis per-
forms better than Bayesian Synthesis for two out of the three 10 by 10 updatings.

Third, the comparison between the static and sequential problems shows, on the
whole, a modest benefit to continually updating the model. It also makes clear the
dominant role that modeling plays in effective prediction—building a better model
(more precisely, a better collection of models) is far more important than having a
bit more data with which to update the model.

Table 3 repeats the comparisons in Table 2, but with ozone replacing log ozone
as the response. Providing predictions for the human analysts, the Mean Human
Prediction Error, Bayesian Synthesis, Convex Synthesis and BART is straightfor-
ward, because for these methods an MCMC Bayesian summary of the posterior
distribution is available. In these cases, the models developed for log ozone imply
corresponding models for ozone: The prediction for a case is given by its predic-
tive mean. In terms of mean squared error of prediction, BART does best, followed
by Convex Synthesis, followed by Bayesian Synthesis, which in turn outperforms
all human analysts.

To provide predictions for the automated methods (other than BART), we faced
a choice between use of the method with strongly skewed likelihood or ad-hoc
correction of a model developed on the log ozone scale. The latter route generally
provided better performance, and Table 3 presents these results. To provide predic-
tions, a model was developed for log ozone, the prediction, say, ŷ, was obtained
for each case, as was an in-sample estimate of mean squared error, say, M̂SE. The
prediction for ozone was taken to be exp{ŷ+0.5M̂SE}. The results in Table 3 are in
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TABLE 3
Comparison of Automatically Fitted Models with Human Models by Mean Squared Errors for
Ozone. The row labels in upper case indicate the modeling method under consideration. The

column labels Data set 1, 2 and 3 indicate which third of the data was used as the test data (with the
other two thirds having been used for model building). The subcolumn labels Once and 10/10

indicate the type of prediction problem under consideration

Test data

Data set 1 Data set 2 Data set 3

Updating method Once 10/10 Once 10/10 Once 10/10

ANALYST 1 – – 15.05 15.00 25.00 25.60
ANALYST 2 16.48 16.00 – – 22.37 22.94
ANALYST 3 14.90 15.29 15.92 16.08 – –

MN. HMN. PR. ERR. 16.08 15.68 15.52 15.54 23.72 23.81
BAYES SYNTH. 14.52 14.83 13.10 14.38 21.44 22.36
CONVEX SYNTH. 14.52 14.29 13.10 13.30 21.44 21.62

CART 25.50 20.43 25.20 20.88 24.21 22.18
BAYES TREE 24.90 21.72 29.81 24.80 22.94 24.70
BAGGED CART 18.58 17.81 18.92 17.14 18.75 18.84
BART 12.26 11.87 13.09 12.34 18.07 18.60
SS 18.32 18.32 26.42 15.92 23.72 21.44
LARS 17.89 19.62 15.13 17.98 25.20 28.09
LASSO 18.66 19.01 15.76 18.40 27.35 28.20
FWD STGW 18.32 18.66 14.98 17.98 27.35 27.77
BMA 18.40 20.88 15.13 16.16 21.62 22.18
AIC 17.64 17.89 15.13 15.13 20.52 20.52
BIC 18.15 18.40 15.44 15.44 20.52 20.52

Note that, to improve readability, this table summarizes mean squared errors, while Table 3 summa-
rizes sum of squared errors.

general accord with those of Table 2. The main difference is that the superiority of
Bayesian Synthesis and Convex Synthesis relative to other methods has decreased.

Table 4 examines forecasts of ozone threshold exceedance. State and federal
regulations provide limitations on ozone. There are a number of ways in which
ozone thresholds can be violated, including a high peak ozone concentration dur-
ing a day and an excessive mean ozone concentration over an extended period of
time. These thresholds have varied over time, and there has been a general down-
ward trend in the standards. We focus on the maximum 1-hour average standard of
0.08 ppm which was in effect from 1971–1979. We have taken this to be 8 in units
of upo3. With each method, a forecast (exceed or not) is made for each day in the
test data set. The table presents the number of incorrect forecasts.

For human models, combinations of human models and BART, creating the
forecast is straightforward. The model provides a predictive distribution for ozone
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TABLE 4
Classification errors (false positive plus false negative) for forecasts of ozone threshold exceedance,
with threshold equal to 8 units of upo3. The row labels in upper case indicate the modeling method

under consideration. The column labels Data set 1, 2 and 3 indicate which third of the data was
used as the test data (with the other two thirds having been used for model building). The column

label Total refers to the total classification errors over the three test data sets. The subcolumn labels
Once and 10/10 indicate the type of prediction problem under consideration. The observed

numbers of exceedances for Data sets 1, 2 and 3 were 58, 60 and 67, respectively

Test data

Data set 1 Data set 2 Data set 3 Total

Updating method Once 10/10 Once 10/10 Once 10/10 Once 10/10

ANALYST 1 – – 14 14 18 17 – –
ANALYST 2 11 10 – – 14 15 – –
ANALYST 3 10 10 11 11 – – – –

MN. HMN. PR. ERR. 10.5 10 12.5 12.5 16 16 39 38.5
BAYES SYNTH. 10 10 12 13 15 14 37 37
CONVEX SYNTH. 10 8 12 11 15 15 37 34

CART 21 13 15 16 17 17 53 46
BAYES TREE 23 17 16 15 21 20 60 52
BAGGED CART 17 14 11 12 19 17 47 43
BART 11 11 11 12 17 15 39 38
SS 16 15 14 11 17 18 47 44
LARS 17 17 12 18 16 19 45 54
LASSO 17 17 12 18 16 19 45 54
FWD STGW 16 17 12 17 16 22 44 56
BMA 16 17 15 13 16 17 47 47
AIC 15 15 13 12 16 16 44 43
BIC 15 15 15 14 16 16 46 45

concentration. If the predictive probability of exceedance is greater than 0.5, the
forecast is “exceed”; if less than 0.5, the forecast is “not exceed.” The automated
methods are more difficult to deal with. For these methods, we faced a choice of
attempting to directly model ozone exceedance or to model some other quantity
and then extract a forecast of ozone exceedance. The latter proved to be a more
effective strategy. The forecasts for these methods are based on whether the point
prediction for log ozone exceeds the threshold of log(8.5). If the point prediction
exceeds log(8.5), the forecast is for exceed; if not, the forecast is “not exceed.”
Convex Synthesis does the best on this task, edging Bayesian Synthesis in the 10
by 10 updating, with BART and the Mean Human Prediction Error close behind.
The other methods lag substantially.

In addition to the comparisons presented here, we have examined several other
potential evaluations. Some of these appear in Yu (2006). Overall, we find a sub-
stantial advantage for the human models and for BART.
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3.1.3. One Bayesian versus Bayesian Synthesis. The previous comparative ex-
ercises demonstrate that the syntheses provide an improvement over the individual
Bayesian. In nearly all instances, Bayesian Synthesis and Convex Synthesis have
performed better than the Mean Human Prediction Error. This alone leads us to
recommend routine use of our techniques. In this section we examine two more
comparative exercises, both of which show the syntheses to be preferable to in-
dividual analysts and to the Mean Human Prediction Error. The comparisons are
“once and for all” comparisons and so Bayesian Synthesis and Convex Synthesis
have identical performance. We also include BART in this comparison because it
is a Bayesian method and so leads to noncontroversial predictive variances and
predictive intervals.

The focus of these additional comparisons is calibration of the posterior pre-
dictive distribution. To look at this issue, we make two comparisons. The first is
accuracy of coverage rates of prediction intervals. We form 90% prediction inter-
vals for the three data sets as before. The intervals are central predictive probability
intervals, cutting off 5% of the predictive distribution in each tail. Table 5 presents
these results under % cvg. We find generally good agreement with nominal cover-
age levels, with the syntheses and BART performing a little better than individual
analysts.

The second comparison is of internal and external measures of accuracy. For
these measures, we focus on the predictive distribution for log ozone. Under a
Bayesian model, the expected squared departure from the predictive mean is the
predictive variance. Thus, as an internal measure of accuracy, we use the variance
of the predictive distribution, averaged over the 110 predicted cases. As an exter-
nal measure of accuracy, we use the mean squared error of prediction. The results
are presented in Table 5. We note that the analysts’ internal estimates systemati-
cally understate the actual variation, while the syntheses and BART produce nearly
equivalent internal and external measures of accuracy. The ratio of MSE to Var is a
measure of the optimism of the Bayesian. When this ratio exceeds 1, the Bayesian
is overly optimistic. We computed these ratios based on the average MSE and vari-
ance over the three data sets. The ratios, summarized in Table 5, exceed one for all
methods other than the syntheses.

3.1.4. Why the syntheses work. We next turn to an explanation of the benefits
of model synthesis. The syntheses, indeed all Bayesian model averaging, provide
the greatest benefits when the models to be synthesized provide different predic-
tions. It is here that averaging allows one to make a different prediction than either
model, and it is here that further information collected in data allows the poste-
rior weights given to different models to select the better model. The benefits of
bagging/averaging models arising from relatively stable procedures such as AIC,
BIC and SS are minimal (results not presented in the tables), because the bulk of
the bagged models provide the same or similar predictions. Figure 1 shows that
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TABLE 5
Calibration of the posterior predictive distribution for log ozone. The row labels in upper case

indicate the modeling method under consideration. The column labels Data set 1, 2 and 3 indicate
which third of the data was used as the test data. In the top table, the subcolumns labeled Var

contain the estimated variances of the predictive distribution, averaged over the 110 predicted cases
in the data set and the subcolumns labeled MSE contain the mean squared errors of prediction for

the 110 predicted cases. The subcolumns labeled % cvg contain the observed coverage rates of 90%
prediction intervals. In the bottom table, the results in the top table are averaged over the three

data sets. The column labeled optimism contains the ratio of the average MSE to the
average variance. A value of the ratio exceeding one corresponds to an overly

optimistic assessment of predictive accuracy

Test data

Data set 1 Data set 2 Data set 3

Var MSE % cvg Var MSE % cvg Var MSE % cvg

ANALYST 1 – – – 0.119 0.112 92.73 0.109 0.133 83.64
ANALYST 2 0.135 0.163 85.45 – – – 0.142 0.142 90.00
ANALYST 3 0.115 0.145 85.45 0.123 0.129 88.18 – – –

MN. HMN. PR. ERR. 0.125 0.154 85.45 0.121 0.121 90.45 0.126 0.138 86.82
SYNTHESES 0.134 0.145 86.36 0.133 0.109 92.73 0.140 0.140 90.00

BART 0.112 0.119 90.00 0.115 0.104 92.73 0.102 0.120 86.36

Average
Optimism

Var MSE % cvg MSE/Var

ANALYST 1 0.114 0.123 88.18 1.077
ANALYST 2 0.139 0.153 87.73 1.102
ANALYST 3 0.119 0.137 86.82 1.153

MN. HMN. PR. ERR. 0.124 0.138 87.58 1.111
SYNTHESES 0.135 0.131 89.70 0.968

BART 0.110 0.114 89.70 1.040

differences in predictions from different analysts show more variation than do dif-
ferences from different AIC models.

The results outlined in Table 2 show clearly that there are large benefits stem-
ming from human modeling with additional improvements attributable to the syn-
theses. Interestingly, large benefits can also ensue from synthesis of a human and
an automatically fitted model, as evidenced by the summaries presented in Yu
(2006). This is in part due to the fact that the predictions produced by human and
automatically fitted models are typically different. Also, the gains appear to be
more sizable when the human models are synthesized with methods based on the
creation of new variables (e.g., Smoothing Spline, CART, Bagged CART, BART)



BAYESIAN SYNTHESIS 1695

FIG. 1. Plots showing the differences in out-of-sample model predictions for the models developed
by the human analysts and the models developed by AIC using various splits of the data.

than when they are synthesized with methods based on regressions with the origi-
nal variables (e.g., AIC, BIC, BMA, LARS, LASSO, Forward Stagewise). Overall,
the empirical results indicate that the predictions produced by the syntheses usu-
ally outperform the predictions of the single constituent elements and inherit many
of the performance properties of the best of the constituent elements.

Across our set of comparisons, Convex Synthesis has outperformed Bayesian
Synthesis by a modest margin. We find this surprising, as our expectation was that
Bayesian Synthesis, by updating the weights, would tilt the predictions toward the
analyst with the better fitting model, resulting in better predictive performance.
We do not have a definitive explanation for this behavior, but we do conjecture
that it is due in part to shortcomings of all of the analysts’ models. The “data-
generating mechanism” is, presumably, not captured by any of the analysts. As
the analysts’ models are not nested within one another, a convex combination of
the analysts’ predictions enlarges the space of predictions. It is plausible that this
expanded space includes models that fit better than those of any individual analyst,
producing the observed results. A related discussion, where the truth is presumed
to lie within the convex hull of a collection of models, appears in Kim and Kim
(2004).
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4. Discussion and further research. In this paper we propose Bayesian Syn-
thesis and Convex Synthesis, a new paradigm for Bayesian data analysis. The par-
adigm is motivated by the concern that using a set of data both to develop a model
and to subsequently fit the model with the same data violates the spirit of Bayes
theorem. The paradigm has been developed with an eye to which parts of a model-
ing effort appear to be stable—model development by a single analyst—and which
appear to yield highly variable results—model development by different analysts.
Tapping into the variable parts of an analysis while retaining enough informa-
tion to preserve stability of the other parts of the analysis allows us to obtain the
greatest benefits of Bayesian model averaging. This also provides us with a more
appropriate accounting of model uncertainty.

We have explored the new paradigm experimentally. Yu (2006) contains a the-
oretical motivation for the work, providing an ensemble of theorems that justifies
split-data analyses. Experimentally, the ozone data analysis shows the remarkable
benefits that accrue to subjective modeling and the further benefits that follow from
synthesizing subjective models across analysts.

In practice, it is more costly and time-consuming to produce several subjective
analyses than a single one, so when should this method be employed? We recom-
mend use of this method when the amount of available data is sufficient to produce
split data sets that are informative, and when the problem is important enough to
justify the involvement of several analysts. Examples of such situations include
efficacy and safety studies in large clinical trials, post-enumeration adjustment of
the census, industrial research and development, and large marketing surveys. Sit-
uations for which the method is not recommended are those where real-time pre-
dictions are needed, as is the case for internet searches, target recognition and
on-line quality control, unless the components of the synthesis can be built ahead
of time. In the latter case, the type of synthesis to be employed will need to avoid
the expense of a formal Bayesian updating of the weights.

This work raises several issues. One issue is how to most effectively split the
data. In this work, we have focused on partitioning the data set with randomization
playing a dominant role. An alternative route is to allow overlapping splits of the
data, so that each analyst receives a more than 1/k fraction of the data. We expect
overlapping splits to be of most use when data sets are small or when they contain
large numbers of potential predictors. Overlapping splits also allow us to benefit
from the modeling efforts of a larger set of analysts. The theoretical results in Yu
(2006) address these overlapping splits.

A second issue is the development of prototypical problems so that a precise
methodology can be specified depending on the goal(s) of the analysis and the type
of data collected. Investigation of these problems will give us more guidance on
how to split the data and on what restrictions to place on the Bayesian summaries.

A third issue is application of the methodology with non-Bayesian components.
The benefits of averaging nonstable or different models applies more broadly than
in the Bayesian setting. Noting differences between the models built by CART
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and by the information criteria, one could average them as well. However, without
a Bayesian summary and with incomplete likelihoods, model synthesis becomes
somewhat more ad-hoc. Convex Synthesis provides one such simple method which
could be implemented with fixed weights, as we have done here, or with weights
determined by some predefined rule. Natural routes to pursue include the prequen-
tial approach [e.g., Dawid and Vovk (1999)] and predictive model selection [e.g.,
Laud and Ibrahim (1995)].

Acknowledgments. The authors would like to thank the Editor and an Asso-
ciate Editor for insightful comments that improved the paper.
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