On a simple measure of dominance

Abstract:

One way to describe how much better treatment Y is than treatment X is to find a response value such that the probability of Y being better than this value is the same as the probability of X being worse. We consider the size of this probability as a measure $\operatorname{dom}(F_Y, F_X)$ of the dominance of Y over X. Thus we label the central point at which the graph of $F_X(x)$ meets the graph of $1 - F_Y(x)$ as $(\operatorname{xdom}(F_Y, F_X), \operatorname{dom}(F_Y, F_X))$. Conditions are given for the asymptotic normality of $(\operatorname{xdom}(\hat{G}, \hat{F}), \operatorname{dom}(\hat{G}, \hat{F}))$ when \hat{G} and \hat{F} are possibly dependent empirical distributions. A Wilson-type approximate confidence interval for $\operatorname{dom}(G, F)$ is proposed and this interval is shown to perform generally better than a Wald-type interval.