
Analysis of Categorical Data

Multicategory Logit Models
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Outline

� Logit Models for Nomial Responses

� Cumulative Logit Models for Ordinal Responses

� Paired-Category Ordinal Logits
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Logit Models for Nomial Responses
� At each combination of explanatory variables (X), Y has a

multinomial distribution, where
∑J

j=1 Yj = n and
∑J

j=1 πj = 1.

Allocate n observations into J categoires.

� Once we speify J − 1 logits, the rest are redundant.

� Baseline logits (use last J th category as baseline)

log

(
πj

πJ

)

= αj + βjX, j = 1, . . . , J − 1

J − 1 logit equations, each with separate parameters.

� All other logits can be found from these J − 1 categories.

log

(
πa

πb

)

= log

(
πa

πJ

)

− log

(
πb

πJ

)

= (αa − αb) + (βa − βb)X
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Example 1: Alligator Food Choice
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Example 2: Belief in Afterlife

Yu Lecture 8 – p. 5/18



Cumulative Logit Models (Ordinal)

� Consider the jth cumulative probability:

P (Y ≤ j)
︸ ︷︷ ︸

probability of Y falling into category j or below

= π1+π2+. . .+πj , j = 1, . . . , J

� Ordering has effect of:

� simpler interpretations

� potentially more power than multicategory logit

� The cumulative logit

logit[P (Y ≤ j)] = log

[
P (Y ≤ j)

1 − P (Y ≤ j)

]

= log
π1 + π2 + . . . + πj

πj+1 + πj+2 + . . . + πJ
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Proportional Odds Model

� Given explanatory variable X,

logit[P (Y ≤ j)] = αj + βX, j = 1, . . . , J − 1

� Odds Ratio

P (Y ≤ j|X = x2)/P (Y > j|X = x2)

P (Y ≤ j|X = x1)/P (Y > j|X = x1)
= eβ(x2−x1)

� The same “proportionality” constant β applies to all js

� Odds ratio does not depend on j, but rather distance x2 −x1

� When x2 = x1 + 1, the odds ratio is eβ

� If categories are reversed, then same fit but β̂ has opposite

sign
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Proportional Odds Model (Cont’d)

� Textbook p.181 Figure 6.2

� Separate cure for each cumulative logit

� Each curve can be thought of as a logistic regression with

outcomes Y ≤ j and Y > j

� Common β gives curves same shape.

� If β < 0, the curves will be descend rather than ascend.

� Textbook p.181 Figure 6.3

� As x increases, the response on Y is more likely to fall at

the low end or the ordinal scale.

� What if β < 0?
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Example 3: Political Ideology
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Inference and Model Fit

� Wald and likelihhod ratio tests for βs

� Related to tests for “Conditional Independence”

� Test for proportional odds assumption

� Check model fit: G2 and X2

� separate effects for the different cumulative probabilities

� fit baseline-category logit model

� collapse ordinal categories to make binary response (not

recommended - loss of efficiency and larger SEs)
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SAS Summary
� PROC LOGISTIC

� Proportional odds

� Model on log[P (Y ≤ j)/P (Y > j)]

� X =







1 Democrat

0 Republican






Quantitative

� β̂ = 0.975 & e0.975 = 2.65 = P̂ (Y ≤j)/P̂ (Y >j)|Demo

P̂ (Y ≤j)/P̂ (Y >j)|Rep

� PROC CATMOD

� Proportional odds: Clogit option

� Model on log[P (Y > j)/P (Y ≤ j)]

� X =







1 Democrat

0 Republican






Categorical

� X = 0 : β̂Rep = −.4875; X = 1 : β̂Dem = .4875; 2β̂ = 0.975
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Example 4: Mental Health
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Adjacent-Category Logits

� Consider the logit: log
(

πj+1

πj

)

= αj + βjx, where

j = 1, . . . , J − 1

� A simpler version: log
(

πj+1

πj

)

= αj + βx

Explanation: Effect of X on odds of higher to lower response is

same for all J − 1 logits.

π2

π1
|x=b

π2

π1
|x=a

= eβ(b−a)
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Example 3 (Cont’d)
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SAS Summary (Cont’d)

PROC CATMOD

� Adjacent Logit model: alogit option

� Model on log[πj+1/πj ]

� X =







1 Democrati

0 Republican






Categorical

� X = 0 : β̂Rep = .2159;

X = 1 : β̂Dem = −.2159;

2β̂ = 0.43

e0.43 =
π̂j+1/π̂j |Rep

π̂j+1/π̂j |Dem
= 1.54
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Continuation-Ratio Logits

� Logits 1:

log
(

π1

π2

)

log
(

π1+π2

π3

)

. . .
log

(
π1+...+πJ−1

πJ

)

� Logits 2:

log
(

π1

π2+...+πJ

)

log
(

π2

π3+...+πJ

)

. . .
log

(
πJ−1

πJ

)
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Example 5
A DEVELOPMENTAL TOXICITY STUDY
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Test of Conditonal Independence
Example 6: Job Satisfaction and Income

� Likelihood Ratio Test

� cumulative logit model

� baseline-category logit model

� Generalized Cocharn-Mantel-Haenszel Tests

� Detecting Nominal-Ordinal Conditional Association

� Detecting Nominal-Nominal Conditional Association
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