Analysis of Categorical Data

Multicategory Logit Models

Outline

- Logit Models for Nomial Responses
- Cumulative Logit Models for Ordinal Responses
- Paired-Category Ordinal Logits

Logit Models for Nomial Responses

- At each combination of explanatory variables (X), Y has a multinomial distribution, where $\sum_{j=1}^{J} Y_j = n$ and $\sum_{j=1}^{J} \pi_j = 1$. Allocate *n* observations into *J* categoires.
- Once we speify J 1 logits, the rest are redundant.
- Baseline logits (use last J^{th} category as baseline)

$$\log\left(\frac{\pi_j}{\pi_J}\right) = \alpha_j + \beta_j X, j = 1, \dots, J - 1$$

J-1 logit equations, each with separate parameters.

All other logits can be found from these J - 1 categories.

$$\log\left(\frac{\pi_a}{\pi_b}\right) = \log\left(\frac{\pi_a}{\pi_J}\right) - \log\left(\frac{\pi_b}{\pi_J}\right)$$
$$= (\alpha_a - \alpha_b) + (\beta_a - \beta_b)X$$

Example 1: Alligator Food Choice

Example 2: Belief in Afterlife

Cumulative Logit Models (Ordinal)

Consider the *jth* cumulative probability:

 $\underbrace{P(Y \leq j)}_{\text{probability of Y falling into category j or below}} = \pi_1 + \pi_2 + \ldots + \pi_j, j = 1, \ldots, J$

- Ordering has effect of:
 - simpler interpretations
 - otentially more power than multicategory logit
- The cumulative logit

$$logit[P(Y \le j)] = log \left[\frac{P(Y \le j)}{1 - P(Y \le j)} \right]$$
$$= log \frac{\pi_1 + \pi_2 + \dots + \pi_j}{\pi_{j+1} + \pi_{j+2} + \dots + \pi_J}$$

Proportional Odds Model

Given explanatory variable X,

$$logit[P(Y \le j)] = \alpha_j + \beta X, j = 1, \dots, J - 1$$

Odds Ratio

$$\frac{P(Y \le j | X = x_2) / P(Y > j | X = x_2)}{P(Y \le j | X = x_1) / P(Y > j | X = x_1)} = e^{\beta(x_2 - x_1)}$$

- The same "proportionality" constant β applies to all js
- Odds ratio does not depend on j, but rather distance $x_2 x_1$
- When $x_2 = x_1 + 1$, the odds ratio is e^{β}
- If categories are reversed, then same fit but β̂ has opposite sign

Proportional Odds Model (Cont'd)

- Textbook p.181 Figure 6.2
 - Separate cure for each cumulative logit
 - ♦ Each curve can be thought of as a logistic regression with outcomes Y ≤ j and Y > j
 - Common β gives curves same shape.
 - If $\beta < 0$, the curves will be descend rather than ascend.
- Textbook p.181 Figure 6.3
 - As x increases, the response on Y is more likely to fall at the low end or the ordinal scale.
 - What if $\beta < 0$?

Example 3: Political Ideology

Inference and Model Fit

- **Wald and likelihhod ratio tests for** β **s**
- Related to tests for "Conditional Independence"
- Test for proportional odds assumption
- Check model fit: G^2 and X^2
 - separate effects for the different cumulative probabilities
 - fit baseline-category logit model
 - collapse ordinal categories to make binary response (not recommended - loss of efficiency and larger SEs)

SAS Summary

PROC LOGISTIC

- Proportional odds

PROC CATMOD

Proportional odds: Clogit option

Example 4: Mental Health

Adjacent-Category Logits

- Consider the logit: $\log\left(\frac{\pi_{j+1}}{\pi_j}\right) = \alpha_j + \beta_j x$, where $j = 1, \dots, J-1$
- A simpler version: $\log\left(\frac{\pi_{j+1}}{\pi_j}\right) = \alpha_j + \beta x$ Explanation: Effect of *X* on odds of higher to lower response is same for all J - 1 logits.

$$\frac{\frac{\pi_2}{\pi_1}|_{x=b}}{\frac{\pi_2}{\pi_1}|_{x=a}} = e^{\beta(b-a)}$$

Example 3 (Cont'd)

SAS Summary (Cont'd)

PROC CATMOD

Adjacent Logit model: alogit option

Continuation-Ratio Logits

Logits 1:

$$\log \left(\frac{\pi_1}{\pi_2}\right)$$

$$\log \left(\frac{\pi_1 + \pi_2}{\pi_3}\right)$$

$$\log \left(\frac{\pi_1 + \dots + \pi_{J-1}}{\pi_J}\right)$$
Logits 2:

$$\log \left(\frac{\pi_1}{\pi_2 + \dots + \pi_J}\right)$$

$$\log \left(\frac{\pi_2}{\pi_3 + \dots + \pi_J}\right)$$

$$\log \left(\frac{\pi_{J-1}}{\pi_J}\right)$$

A DEVELOPMENTAL TOXICITY STUDY

Yu Lecture 8 - p. 17/18

Test of Conditonal Independence

Example 6: Job Satisfaction and Income

- Likelihood Ratio Test
 - cumulative logit model
 - baseline-category logit model
- Generalized Cocharn-Mantel-Haenszel Tests
- Detecting Nominal-Ordinal Conditional Association
- Detecting Nominal-Nominal Conditional Association