
Analysis of Categorical Data

Simple Logistic Regression
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Setup

� Binary (0, 1) response variable Y

� One or more explanatory variables x1, . . . , xk

� may be either continuous or categorical

� X = (x1, . . . , xk) is the vector of predictors

� Start with one continuous predictor x
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Logit Transformation

� modeled as a linear function of predictors

Logit(π) = log[π/(1 − π)] = β′
x = β1x1 + . . . + βkxk

� Often one of the predictors is set to the constant 1.

� The coefficient of the constant predictor is usually denoted

by α.

� Inverting the logit transformation gives the logistic curve

π = exp(β′
x)/[1 + exp(β′

x)]
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Interpretation of the Logistic Curve
� For univariate x,

� β determines the rate of increase/+(decrease/-) of the

S-shaped curve

� Slope of Probability Curve at x is

βπ(x)[1 − π(x)]

� as β → 0, the curve flattens to a horizontal straight line

� steepest at π = 0.5 or x = −α
β

� since the logistic density is symmetric, π(x) approaches 1

at the same rate that it approaches 0

� Grouping continuous explanatory variable

� Average 0 − 1 response within each group

� Gives approximate continuous probability curve
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Odds and Odds Ratio

� Odds =
π

1 − π
= exp(α + βx) = exp(α)exp(βx)

� Odds increases by a FACTOR of exp(β) for each unit increase

in x.

� eβ∆x is an odds ratio, the odds at X = x + ∆x divided by the

odds at X = x.

� Odds ratio valid under all sampling models

� Prospective independent binomial

� Retrospective independent binomial

� Cross-classified multinomial

� Poisson
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Inference for Logistic Regression
� Hypothesis of β = 0 under independent binomial sampling:

� Confidence interval for logit(π)

� Significance testing

� Confidence interval for π
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Residuals for Logit Models

� The Pearson Residual

ei =
yi − niπ̂i

√

niπ̂i(1 − π̂i)

Pearson statistic for testing the model fit satisfies

X2 =
∑

e2

i

� Adjusted Residual

ei√
1 − hi

=
yi − niπ̂i

√

niπ̂i(1 − π̂i)(1 − hi)
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Example 1: Horseshoe Crabs

� Let Y = 1 if female has at least 1 satellite and 0 if no satellite

� Let X=Width

� Look at the observed data and grouped proportions with

smooth curve (handout)

� In either case, note the increasing trend

� Linear model 1: Binomial, identity link
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Example 1 (Cont’d)

Linear Model 2: Binomial, Logit Link

� MLE

� Odds

� Inference
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Logit Models with Qualitive Predictors

A binary response Y has two binary predictors X and Z, the model

is

logit[P (Y = 1)] = logit(π) = log
π

1 − π
= α + β1X + β2Z

For fixed Z, when X changes from 0 to 1,

∆logit = [α + β1 + β2Z] − [α + β2Z] = β1

Thus the eβ1 = conditional odds ratio between X and Y for Z = z

fixed.

β1 = 0 ⇒ Conditional independence (LR, Wald)
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Example 2: Sentencing Data
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ANOVA Type Regression

� Consider an alternative model

logit(π) = α + βX
i + βZ

k

where i = 1, . . . , I with I − 1 non-redundant parameters and

k = 1, . . . , K with K − 1 non-redundant parameters.

� βX
1

= βX
2

= . . . = βX
I ⇒ Conditional independence of X and Y

given Z

� Most software (SAS) sets the last (redundant) category to zero,

βX
I = 0.

Yu Lecture 5, 6 – p. 12/12


	Setup
	Logit Transformation
	Interpretation of the Logistic Curve
	Odds and Odds Ratio
	Inference for Logistic Regression
	Residuals for Logit Models
	Example 1: Horseshoe Crabs
	Example 1 (Cont'd)
	Logit Models with Qualitive Predictors
	Example 2: Sentencing Data
	ANOVA Type Regression

