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Analysis of Categorical Data

Simple Logistic Regression



Setup
-

B Binary (0, 1) response variable Y

m One or more explanatory variables x4, ...,z
¢ may be either continuous or categorical
¢ X = (x1,...,x) is the vector of predictors

¢ Start with one continuous predictor x
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L ogit Transformation

-

B modeled as a linear function of predictors

Logit(r) = loglr /(1 — 7)) = B'x = Bia1 + ... + By

m Often one of the predictors is set to the constant 1.

¢ The coefficient of the constant predictor is usually denoted
by «.

B Inverting the logit transformation gives the logistic curve

m = exp(8'x)/[1 + exp(B8'x)]
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|nter pretation of the Logistic Curve

m For univariate z,

¢ ( determines the rate of increase/+(decrease/-) of the
S-shaped curve

¢ Slope of Probability Curve at x Is

Br(z)[1 — m(z)]

¢ as § — 0, the curve flattens to a horizontal straight line
¢ steepestatm =0.50rx = —%
¢ since the logistic density is symmetric, w(x) approaches 1
at the same rate that it approaches O
B Grouping continuous explanatory variable
¢ Average 0 — 1 response within each group

L ¢ Gives approximate continuous probability curve J
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Odds and Odds Ratio
Odds = T

7

T = expla + fr) = exp(a)ezp(fr)

Odds increases by a FACTOR of exp(() for each unit increase
N z.
eP5% is an odds ratio, the odds at X = x + Az divided by the
odds at X = .
Odds ratio valid under all sampling models

¢ Prospective independent binomial

¢ Retrospective independent binomial

¢ Cross-classified multinomial

¢ Poisson
|
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Inferencefor Logistic Regression
f m Hypothesis of 5 = 0 under independent binomial sampling: T

m Confidence interval for logit()

B Significance testing

m Confidence interval for =
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-

Residualsfor Logit Models

B The Pearson Residual

Y~ N T
\/nq;fn;(l —ﬁ'?;)

Pearson statistic for testing the model fit satisfies

X2 :Ze%

€q

B Adjusted Residual

€; . Yi — N4
1 —

vV hz \/nzfrz(l — ﬁ'z)(l — hz)
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Example 1. Horseshoe Crabs
-

Let Y = 1 if female has at least 1 satellite and 0 if no satellite
Let X=W.idth

Look at the observed data and grouped proportions with
smooth curve (handout)

In either case, note the increasing trend

Linear model 1: Binomial, identity link

|
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Example 1 (Cont’d)
-

Linear Model 2: Binomial, Logit Link

m MLE

m Odds

B Inference

o



L ogit Modelswith Qualitive Predictors
-

fA binary response Y has two binary predictors X and Z, the model

IS

T
=a+ 51X + (274

logit|P(Y = 1)] = logit(w) = log 1

For fixed Z, when X changes from O to 1,
Alogit = |a+ B1 + B Z] — la+ B Z] = [1

Thus the ¢°t = conditional odds ratio between X and Y for Z = 2

fixed.
31 = 0 = Conditional independence (LR, Wald)
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Example 2. Sentencing Data
- -



ANOVA Type Regression

f m Consider an alternative model T

logit(T) = o+ B + B¢

where i = 1,...,I with I — 1 non-redundant parameters and
k=1,..., K with K —1 non-redundant parameters.

B 3% =35 =...= 7 = Conditional independence of X and Y
given Z

B Most software (SAS) sets the last (redundant) category to zero,
3 = 0.
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