Analysis of Categorical Data

Three-Way Contingency Table

Outline

- Three way contingency tables
- Simpson's paradox
- M. Marginal vs. conditional independence
- Homogeneous association
- Г. Cochran-Mantel-Haenszel Methods

Three-Way Contingency Tables

- Г. Partial Tables
	- \blacklozenge Make 2-way tables of $X \times Y$ at variaous levels of $Z.$ This effectively removes the effect of Z by holding it constant.
	- ♦ The associations of partial tables are called *conditional* associations because we are looking at X and Y conditional on a fixed level of $Z.$
	- ◆ Focus is on relationship between variables X and Y at fixed levels of another variable $Z = 1, \ldots, K$.
- Г. Marginal Tables
	- ◆ Sum the counts from the same cell location of partial tables. The idea is to form an X,Y table by summing over $Z.$
	- ◆ Marginal tables can be quite misleading: Simpson's Paradox.

Simpson's Paradox: Example 1

Table 1: Admission to Graduate School (Verducci)

- \blacksquare $X =$ Sex: Male, Female
- Y = Admission: Accepted, Rejected
- M. $Z =$ College: Science, Arts

Example 1 (Cont'd)

Condition on Z .

- $O_{XY(Sci)} = 4/5 < 1$
- $O_{XY(Art)} = 8/9 < 1$
- $O_{XY} = 21/11 > 1$

C Condition on X .

- $O_{ZY(M)}=6$
- $O_{ZY(F)}=20/3$
- $O_{ZY} = 187/12$
- \blacksquare Condition on Y .
	- $O_{ZX(Acc)}=36/5$
	- $O_{ZX(Rej)} = 8$

$$
\bullet \ \ O_{ZX}=7
$$

Simpson's Paradox (Cont'd)

Г. Paradox

- ◆ In each College, women have a greater acceptance rate than do men;
- ◆ Overall, men have a greater acceptance rate than do women;
- Г. Resolution
	- ◆ The sciences have a much higher acceptance rate than do the arts
	- ◆ Most men apply to sciences; women to arts
	- ◆ Simpson's paradox happens when there are different associations in partial and marginal tables.

Marginal vs. Conditional Independence

- If X and Y are independent in each partial table, controlling for Z , then X and Y are conditionally independent.
- M. If ^X and ^Y are conditionally independent at each level of Z, but may still not be marginally independent
- M. Example ² : Clinic and Treatment

Example 2 (Cont'd)

Condition on Z .

- $O_{XY(C1)} = 1$
- $O_{XY(C2)} = 1$
- $O_{XY} = 2$

C Condition on X .

- $O_{ZY(A)}=6$
- $O_{ZY(B)}=6$
- $O_{ZY}=6$

\blacksquare Condition on Y .

- $O_{ZX(Good)}=6$
- $O_{ZX(Bad)} = 6$

$$
\bullet \ \ O_{ZX}=6
$$

Example 2 (Summary)

 X and Y are conditionally independent at each level of Z , but they are not marginally independent. This happens because, acrosslevels of Z,

- there is a reversal in the odds of success:
	- \triangleleft 3:2 in Clinic 1
	- \triangleleft 1:4 in Clinic 2
- There is a reversal in prevalence of treatment:
	- ◆ Clinic 1 uses Treatment A the most
	- ◆ Clinic 2 uses Treatment B the most

Homogeneous Association

- **E** Effect of X on Y is the same at all levels of Z .
- Г. Happens when the conditional odds ratio using any two levels of X and any two levels of Y is the same at all levels of Z :

$$
O_{XY(1)} = \ldots = O_{XY(K)}
$$

- M. Conditional Independence is ^a special case, when these all equal 1.
- M. In the case when K=2, homogeneous association implies that the other conditional odds ratios will also be the same:

$$
O_{ZY(1)} = O_{ZY(2)}
$$
 and $O_{ZX(1)} = O_{ZX(2)}$

Г. For 3-way tables of larger dimensions, homogeneous association generalizes to the model of no-three wayinteraction.

Example 3: Bipoloar Children Trtment

- ²⁰⁰ families with ^a bipolar child
	- ◆ 100 randomized to immediate "treatment"
	- ♦ 100 randomized to 1-year waitlist
- Outcome Variable: Social functioning at one year into the study
	- ◆ 100 good and 100 bad
- Г. Moderating Variable: Both biological parents as caregivers
	- ◆ 100 Yes and 100 No

Example 3 (Cont'd)

Condition on Z .

- \bullet $O_{XY(IF)} = 3$
- \blacklozenge $O_{XY(NIF)} = 3$
- $O_{XY} = 3$

C Condition on X .

- $O_{ZY(imm)}=1$
- $O_{ZY (wait)} = 1$
- $O_{ZY} = 1.9$

\blacksquare Condition on Y .

- $O_{ZX(Good)}=16$
- $O_{ZX(Bad)}=16$

$$
\bullet \ \ O_{ZX}=16
$$

CMH Test

 \blacksquare Motivation: Is there an association between X and Y ?

- ◆ Can't just collapse table [why not?]
- Assume there is a common odds ratio θ at each level of Z
- Hypotheses
	- \blacklozenge Null hypothesis $H_0: \theta = 1$
	- Alternative hypothesis H_1 : θ < 1 or $\theta > 1$
- Г. **Evidence**
	- \blacklozenge Condition on the margins of XY table at each level of Z
	- \blacklozenge Only need to consider one entry n_{11k} at level k of Z $(k=1,\ldots,K)$
	- \blacklozenge Under the null hypothesis, $\{n_{11k}\}$ are independent hypergeometric random variables

Why Not?

Could wrongly find association: Example ⁴

Example 4 (Cont'd): Why Not?

Could wrongly mistake diverse association for no association

CMH Test

Under the null hypothesis, $\{n_{11k}\}$ are independent hypergeometric random variables

$$
\mu_{11k} = E(n_{11k}) = \frac{n_{1+k}n_{+1k}}{n_{++k}}
$$

$$
Var(n_{11k}) = \frac{n_{1+k}n_{1+k}n_{+1k}n_{+1k}}{n_{++k}^2(n_{++k}-1)}
$$

Г. CMH Test Statistics

$$
CMH = \frac{\left[\sum_{k=1}^{K} (n_{11k} - \mu_{11k})\right]^2}{\sum_{k=1}^{K} Var(n_{11k})}
$$

- ♦ Important: In the numerator, sum before squaring
- ♦ Under the null hypothesis $CMH\sim \chi_1^2$

CMH Test (Cont'd)

- The CMH test is a powerful summary of evidence against the hypothesis of conditional independence, as long as the sampleassociations fall primarily in ^a single direction.
- Г. Mantel-Haenszel Estimator for Common Odds Ratio

$$
\hat{\theta}_{MH} = \frac{\sum_{k} (\frac{n_{11k}n_{22k}}{n_{++k}})}{\sum_{k} (\frac{n_{12k}n_{21k}}{n_{++k}})}
$$

■ Example 5: Coronary Artery Disease