Analysis of Categorical Data

Two-Way Contingency Table

Contingency Table

 $\pi_{i+} = \sum_{j=1}^{J} \pi_{ij} = \text{row i marginal prob.} \qquad \sum_{i=1}^{I} \pi_{i+} = 1$ $\pi_{+j} = \sum_{i=1}^{I} \pi_{ij} = \text{colimn j marginal prob.} \qquad \sum_{j=1}^{J} \pi_{+j} = 1$

Contingency Table

Table 2: Observed Counts

		Re	able			
	1	<i>n</i> ₁₁	n_{12}		n_{1J}	n_{1+}
Explanatory	2	n_{21}	n_{22}		n_{2J}	n_{2+}
Variable	• • •	•••				•••
		n_{I1}	n_{I2}		n_{IJ}	n_{I+}
		$n_{\pm 1}$	n_{+2}		n_{+J}	$n_{++} = n$

 $n_{ij} = \#$ observed in i,j cell n =total sample size

Basic Sampling Distributions

- Binomial: each row defines different groups and the sample size (n_{1+}, n_{2+}) are fixed by design. Need conditional distribution.
- Multinomial: When the total sample size is fixed and the response has k categories.
- Poison: Used for counts of events that occure randomly over time or space, when outcomes in disjoint periods are independent.

Analysis of the Table

Sample Proportions-

Conditional Probabilities

Under Independent Assumptions

Example 1: Cancer vs. Dose

Popular Measures of Association

- Difference in Proportions
- Relative Risk
- Odds Ratio

Notation for 2×2 **Tables**

Difference in Proportions

- Want to make inference about $\pi_1 \pi_2$
- Assumptions
- Estimation:
- Properties of estimators
 - Mean
 - Variance

Example 1 (Cont'd)

Relative Risk

- Define Relative Risk:
- Possible Values:
- Estimation:
- Variance:

Confidence Interval:

Example 1 (Cont'd)

Odds Ratio

- Odds and Odds Ratio θ :
- Properties of θ

- Estimation
- Variance

Confidence Interval

Example 1 (Cont'd)

Relationship Between R and θ

odds ratio =

$$\theta = \frac{\pi_1(1 - \pi_2)}{\pi_2(1 - \pi_1)} = \left(\frac{\pi_1}{\pi_2}\right)\left(\frac{1 - \pi_2}{1 - \pi_1}\right) \approx \frac{\pi_1}{\pi_2}$$

= Relative Risk

The approximation is good if both π_1 and π_2 are small.

Chi-square Test for Independence

Expected cell counts assuming no association

Pearson's Chi-sqaure statsitcs

Yates' corrected chi-square

Example 2: Spouses' Heights

Fisher's Exact Test

- Useful for small samples
- Condition on both sets of marginal values
- Use Hypergeometric Distribution
 - Under independence, probability for the observed data:

- Margin probability of the columns:
- Conditional distribution of observed data given the margin:

Example 3: Non-Smoking Males