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Randomized Experimental Designs

Three Design Principles:

1. Replication

2. Randomization

3. Blocking
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Randomized Experimental Designs

1. Replication

• Allows estimation of experimental error, against 

which, differences in treatments are judged.
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Randomized Experimental Designs

Replication
• Allows estimation of expt’l error, against which, 

differences in trts are judged.

Experimental Error: 
• Measure of random variability. 
• Inherent variability between subjects treated 

alike.
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Randomized Experimental Designs

True Replication
• Each treatment is applied to several 

experimental units.
• Multiple measurements obtained on each 

experimental unit is not true replication. This is 
referred to as subsampling.
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Randomized Experimental Designs

If you don’t replicate . . .

. . . You can’t estimate!
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Randomized Experimental Designs

Example
• In a clinical trial investigating a new therapy for 

seizure control in epileptics, 50 patients are 
given (randomized to) the new (experimental) 
therapy and 50 are given the standard therapy.

• Each treatment is replicated 50 times.
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Randomized Experimental Designs

To ensure the validity of our estimates of 

treatment effects we rely on ...
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Randomized Experimental Designs

. . . Randomization
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Randomized Experimental Designs

2. Randomization

• leads to unbiased estimates of 
treatment effects
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Randomized Experimental Designs

Randomization

• leads to unbiased estimates of 
treatment effects

• i.e., estimates free from systematic 

differences due to uncontrolled variables



LSU-HSC School of Public Health 
Biostatistics

12

Randomized Experimental Designs

Without randomization, we may 
need to adjust analysis by 

• stratifying

• covariate adjustment
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Randomized Experimental Designs

Example

• In our epilepsy example, we would randomly

assign ½ the patients to the new drug and ½ 

the patients to the standard drug.
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Randomized Experimental Designs

3. Blocking
• Arranging subjects into similar groups 

(blocks) to account for systematic 
differences. 

- e.g., clinic site, gender, or age.
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Randomized Experimental Designs

• Blocking

• leads to increased sensitivity of statistical 

tests by reducing expt’l error.
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Randomized Experimental Designs

Blocking

• Result: More powerful statistical test
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Randomized Experimental Designs

Blocking

Example
• To achieve the desired sample size of 50 per 

treatment group, we may need to conduct the 
epilepsy study at 10 different study centers.

• Each center would be considered a block.
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Randomized Experimental Designs

Blocking

• There would be a separate randomization plan 
at each center (block).

• Study centers are almost always considered 
blocks in clinical trial designs, since it is 
expected that systematic differences exist 
among them.
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Randomized Experimental Designs

Blocking

Example
• Animal litters are often viewed as blocks containing 

several similar experimental units (eu), i.e., siblings.

• A complete replication of the treatments would 
normally occur within a litter (block).
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Randomized Experimental Designs

Summary:

• Replication – allows us to estimate Expt’l Error

• Randomization – ensures unbiased estimates of 
treatment effects

• Blocking – increases power of statistical tests
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Randomized Experimental Designs

Three Aspects of Any Statistical Design

• Treatment Design

• Sampling Design

• Error Control Design
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Randomized Experimental Designs

1. Treatment Design 

• How many factors

• How many levels per factor

• Range of the levels

• Qualitative vs quantitative factors
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Randomized Experimental Designs

Example 1 Headache Relief

Suppose we wish to compare the effects of 
popular analgesics for reducing headaches.
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Randomized Experimental Designs

Example 1 Headache Relief

Suppose we wish to compare the effects of 
popular analgesics for reducing headaches.

Factor – Type of Analgesic (Number of levels = 3)
– Treatment 1: Aspirin          (Qualitative levels)
– Treatment 2: Tylenol
– Treatment 3: Placebo
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Randomized Experimental Designs

Example 2 Dose Response

Suppose we wish to compare the 

pharmacokinetics of a new compound for 

treating pneumonia in the elderly.
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Randomized Experimental Designs

Example 2 Dose Response
Suppose we wish to compare the 
pharmacokinetics of a new compound for 
treating pneumonia in the elderly.

Design:
Four groups of dogs (3 in each group) with 
induced pneumonia are randomly assigned to 
one of the 4 dose levels: 0, 10, 100, 1000 mg
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Randomized Experimental Designs

Example 2 . . .Dose Response
The treatment factor is dosage.
The treatment levels are the dosages: 

0, 10, 100, 1000

Dosage is an example of a quantitative factor
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Randomized Experimental Designs

Three Aspects of Any Statistical Design

• Treatment Design

• Sampling Design

• Error Control Design
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Randomized Experimental Designs

2. Sampling or Observation Design 

Determines the level at which observations are 
made.
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Randomized Experimental Designs

2. Sampling or Observation Design 

Is observational unit (OU)  = experimental unit ? 

or,   

is there subsampling of EU ?
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Randomized Experimental Designs

Examples of Subsampling (OU) 

Example 1: Blood Pressure Study (OU   EU)

• Resting blood pressure may be measured twice 
in a 5-minute interval.

≠
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Randomized Experimental Designs

Examples of Subsampling (OU) 

Example 2: Study of New Antibiotic (OU   EU)

• A microbiologist may measure bacterial 
concentrations from several areas on a petri
dish. 

≠
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Randomized Experimental Designs

Three Aspects of Any Statistical Design

• Treatment Design

• Sampling Design

• Error Control Design
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Randomized Experimental Designs

3. Error Control Design 

• concerned with actual arrangement of the expt’l
units

• How treatments are assigned to eu’s
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Randomized Experimental Designs

Error Control Design 

Goal:    Decrease experimental error
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Randomized Experimental Designs

Error Control Design 

Examples:
– Completely Randomized Design (CRD)

– Randomized Complete Block Design (RCB)

– Cross-Over and Repeated Measures Designs



LSU-HSC School of Public Health 
Biostatistics

37

Randomized Experimental Designs

Error Control Design 

• Completely Randomized Design (CRD)

– All subjects have an equal chance of receiving any 
particular treatment

– The headache relief study uses a completely 
randomized design.
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Randomized Experimental Designs

Error Control Design 

• Randomized Complete Block Design (RCB)

– Groups of similar subjects (blocks of eu’s) are 
formed

– Treatments are assigned completely at random to 
subjects within blocks

– The epilepsy study uses a RCB design where 
(centers = blocks)
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Randomized Experimental Designs

Error Control Design 

• Cross-over Design

• Each subject receives all treatments in a pre-
determined order.

• Subjects are randomized to sequences of trts

• Washout period separates treatment periods
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Randomized Experimental Designs

• Cross-over Design

Sequence Period 1 Washout Period 2
AB Trt A - - - Trt B
BA Trt B - - - Trt A
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Randomized Experimental Designs

Error Control Design 

• Repeated Measures Design

– Each subject is repeatedly measured over time.

– Time and its interaction with treatment become 
factors to be studied.

– Missing values can become major issue in analysis
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Randomized Experimental Designs

Example: Repeated Measures

• Study effect of d=3 drugs on heart rate

• At study start, n=30 subjects randomly assigned to 
each drug

• After administration, heart rate measured every 5 
minutes for a total of t=24 times



LSU-HSC School of Public Health 
Biostatistics

43

Randomized Experimental Designs

Summary of Design Components:

• Treatment Design – Arrangement of treatments
• Sampling Design – Nature of observations
• Error Control – How are trt’s randomized to eu

– CRD
– RCB
– Crossover / Repeated Measures
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Randomized Experimental Designs

Threats to Study Validity:

• Bias
• Confounding
• Regression to the Mean
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Randomized Experimental Designs

Bias
• Any effect that produces results that depart 

systematically from the true value. 

• Has effect on association between exposure (i.e., 
treatment) and outcome:
– Creates apparent associations
– Obscures real associations
– Usually can’t be corrected with analysis
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Randomized Experimental Designs

Confounding Variable

• A variable that is associated independently with 
both exposure and outcome. 

• A treatment effect may be masked or totally 
indistinguishable from the effect of a 
confounder  
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Randomized Experimental Designs

Confounding

• Has effect on association between exposure 
and outcome:

• The association is real, but it is not due to cause 
and effect

• Like bias, confounding can also obscure real 
associations

• Can be addressed with analysis
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Randomized Experimental Designs

Regression to the Mean

• Tendency of an observation that is extreme on 

its initial measurement to be closer to normal 

(the mean) on subsequent measurement.
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Randomized Experimental Designs

Addressing Regression to the Mean:

• Include concurrent controls

• If a cut-point criterion used for entry, require that 

criterion be met on two consecutive measurements.
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Randomized Experimental Designs

Combating Threats to Study Validity:

• Randomization
• Masking
• Concurrent Controls



LSU-HSC School of Public Health 
Biostatistics

51

Randomized Experimental Designs

Randomization

• principal method available for reducing selection bias

• Tends to balance groups with respect to known and 

unknown confounders
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Randomized Experimental Designs

Masking (Blinding)

• Reduces assessment bias

• Three types of masking:
• single
• double
• triple
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Randomized Experimental Designs

Concurrent Controls

• Resource intensive method, but very effective at 
reducing bias

• Eliminates confounding of treatment with calendar 
time

• Facilitates use of randomization
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Four Design Scenarios

P1 P2 P3 P4
Design 1

P1 P2P3 P4

P1P2 P3P4

Design 2
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Four Design Scenarios
P1 P2P3 P4

P1 P2 P3 P4

P2        P3       P1       P4        P4       P2       P3        P1

P3       P1        P4       P2       P3       P1       P4       P2

Design 3

Design 4

Morning

Afternoon
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