Analysis of Categorical Data

Two-Way Contingency Table
Contingency Table

Table 1: $I \times J$ Table

\[
\begin{array}{cccc}
 & 1 & 2 & \ldots & J \\
1 & \pi_{11} & \pi_{12} & \ldots & \pi_{1J} & \pi_{1+} \\
2 & \pi_{21} & \pi_{22} & \ldots & \pi_{2J} & \pi_{2+} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
I & \pi_{I1} & \pi_{I2} & \ldots & \pi_{IJ} & \pi_{I+} \\
\end{array}
\]

- $\pi_{i+} = \sum_{j=1}^{J} \pi_{ij} =$ row i marginal prob.
- $\sum_{i=1}^{I} \pi_{i+} = 1$

- $\pi_{+j} = \sum_{i=1}^{I} \pi_{ij} =$ colimn j marginal prob.
- $\sum_{j=1}^{J} \pi_{+j} = 1$
Contingency Table

Table 2: Observed Counts

<table>
<thead>
<tr>
<th>Response Variable</th>
<th>1</th>
<th>2</th>
<th>...</th>
<th>I</th>
<th>$1+$</th>
<th>$2+$</th>
<th>...</th>
<th>$I+$</th>
<th>$++$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n_{11}</td>
<td>n_{12}</td>
<td>...</td>
<td>n_{1J}</td>
<td>n_{1+}</td>
<td>n_{21}</td>
<td>n_{22}</td>
<td>...</td>
<td>n_{2J}</td>
</tr>
<tr>
<td>Explanatory Variable</td>
<td>n_{J1}</td>
<td>n_{J2}</td>
<td>...</td>
<td>n_{JJ}</td>
<td>n_{J+}</td>
<td>n_{+1}</td>
<td>n_{+2}</td>
<td>...</td>
<td>n_{+J}</td>
</tr>
</tbody>
</table>

$n_{ij} = \#$ observed in i,j cell

$n = \#$ total sample size
Basic Sampling Distributions

- Binomial: each row defines different groups and the sample size \((n_{1+}, n_{2+})\) are fixed by design. Need conditional distribution.

- Multinomial: When the total sample size is fixed and the response has \(k\) categories.

- Poison: Used for counts of events that occur randomly over time or space, when outcomes in disjoint periods are independent.
Analysis of the Table

■ Sample Proportions-

■ Conditional Probabilities

■ Under Independent Assumptions
Example 1: Cancer vs. Dose
Popular Measures of Association

- Difference in Proportions
- Relative Risk
- Odds Ratio
Notation for 2×2 Tables

<table>
<thead>
<tr>
<th>Explanatory Variable</th>
<th>Risk Group 1</th>
<th>Risk Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>π_1</td>
<td>π_2</td>
</tr>
<tr>
<td></td>
<td>$1 - \pi_1$</td>
<td>$1 - \pi_2$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data</th>
<th>Response Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Success</td>
</tr>
<tr>
<td>Explanatory Variable</td>
<td>n_{11}</td>
</tr>
<tr>
<td></td>
<td>n_{21}</td>
</tr>
<tr>
<td></td>
<td>n_{+1}</td>
</tr>
</tbody>
</table>
Difference in Proportions

- Want to make inference about $\pi_1 - \pi_2$
- Assumptions

- Estimation:
 - Properties of estimators
 - Mean
 - Variance

- Confidence interval
Example 1 (Cont’d)
Relative Risk

- Define Relative Risk:
- Possible Values:
- Estimation:
- Variance:

- Confidence Interval:

- Side Comment:
Example 1 (Cont’d)
Odds Ratio

- Odds and Odds Ratio θ:
- Properties of θ

- Estimation
- Variance

- Confidence Interval
Example 1 (Cont’d)
Relationship Between R and θ

odds ratio =

$$\theta = \frac{\pi_1(1 - \pi_2)}{\pi_2(1 - \pi_1)} = \left(\frac{\pi_1}{\pi_2}\right)\left(\frac{1 - \pi_2}{1 - \pi_1}\right) \approx \frac{\pi_1}{\pi_2}$$

= Relative Risk

The approximation is good if both π_1 and π_2 are small.
Chi-square Test for Independence

- Expected cell counts assuming no association
- Pearson’s Chi-square statistics
- Yates’ corrected chi-square
Example 2: Spouses’ Heights
Fisher’s Exact Test

- Useful for small samples
- Condition on both sets of marginal values
- Use Hypergeometric Distribution
 - Under independence, probability for the observed data:

 - Margin probability of the columns:

 - Conditional distribution of observed data given the margin:
Example 3: Non-Smoking Males